Research · Teaching · Software Quentin Mérigot

Professor in applied mathematics (équipe AN-EDP, LMO, Université Paris-Sud)
Coordinator of the MAGA project, funded by the French ANR.

Research topics: computational optimal transport, computational geometry, geometric inference. More generally, I'm interested in the discretization of geometric variational and inverse problems.

Address: Département de Mathématiques Bâtiment 425
Faculté des Sciences d'Orsay Université Paris-Sud
F-91405 Orsay Cedex

Open positions: MAGA offers two one-year post-doc positions on computational optimal transport, don't hesitate to contact me for further information.


  1. An algorithm for optimal transport between a simplex soup and a point cloud
    Quentin Mérigot, Jocelyn Meyron, Boris Thibert


  1. A Lagrangian scheme for the incompressible Euler equation using optimal transport
    Thomas Gallouët, Quentin Mérigot
    Foundation of Computational Mathematics (FOCM), accepted
  2. Convergence of a Newton algorithm for semi-discrete optimal transport
    Jun Kitagawa, Quentin Mérigot, Boris Thibert
    Journal of the European Math Society (JEMS), accepted
  3. Minimal geodesics along volume preserving maps, through semi-discrete optimal transport
    Quentin Mérigot, Jean-Marie Mirebeau
    SIAM J. Numerical Analysis (SINUM), 54(6), 3465–3492, 2016 [doi]
  4. Discretization of functionals involving the Monge-Ampère operator
    Jean-David Benamou, Guillaume Carlier, Quentin Mérigot, Édouard Oudet
    Numerische Mathematik 134 (3), 611-636, 2016 [doi]
  5. Far-field reflector problem and intersection of paraboloids
    Pedro Machado Manhães de Castro, Quentin Mérigot, Boris Thibert
    Numerische Mathematik 134 (2), 389-411, 2016 [doi] (also Proc. SoCG 2014 [doi])
  6. An optimal transport approach for seismic tomography: application to 3D FWI
    Ludovic Métivier, Romain Brossier, Quentin Mérigot, Édouard Oudet, Jean Virieux
    Inverse Problems, 32 (11), 2016 [doi]
  7. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion
    Ludovic Métivier, Romain Brossier, Quentin Mérigot, Édouard Oudet, Jean Virieux
    Geophysical Journal International (GJI), 205 (1), 345-377, 2016 [doi]
  8. Handling convexity-like constraints in variational problems
    Quentin Mérigot, Édouard Oudet
    SIAM Journal on Numerical Analysis (SINUM), 52 (5), 2466–2487, 2014 [doi].
  9. Robust Geometry Estimation using the Generalized Voronoi Covariance Measure
    Louis Cuel, Jacques-Olivier Lachaud, Quentin Mérigot, Boris Thibert
    SIAM Journal on Imaging Science (SIIMS), 8(2), 1293–1314, 2015 [doi].
  10. On the reconstruction of convex sets from random normals measurements
    Hiba Abdallah, Quentin Mérigot
    Discrete and Computational Geometry (DCG) 53(3), 569–586, 2015 (also Proc SoCG 2014) [doi]
  11. Discrete optimal transport: complexity, geometry and applications
    Quentin Mérigot, Édouard Oudet
    Discrete and Computational Geometry (DCG), 55(2), 263–283, 2016 [doi]
  12. Far-field reflector problem under design constraints
    Julien André, Dominique Attali, Quentin Mérigot, Boris Thibert
    Int. J. of Computational Geometry and Applications (IJCGA), 25 (2), 143-162, 2015 [doi].
  13. Lower bounds for k-distance approximation.
    Quentin Mérigot
    Proceedings of the 29th ACM Symposium on Computational Geometry, 2013 [doi]
  14. Shape Matching via Quotient Spaces.
    Maks Ovsjanikov, Quentin Mérigot, Viorica Pătrăucean, Leonidas Guibas
    Computer Graphics Forum 32 (5) 1–11, 2013 (also Proc SGP 2013) [doi].
  15. Witnessed k-distance.
    Leonidas Guibas, Quentin Mérigot, D. Morozov
    Discrete and Computational Geometry (DCG), 49 (1) 22–45, 2013 (also Proc SoCG 2011) [doi].
  16. A multiscale approach to optimal transport.
    Quentin Mérigot
    Computer Graphics Forum 30 (5) 1583–1592, 2011 (also Proc SGP 2011) [doi].
  17. Size of the medial axis and stability of Federer’s curvature measures
    Quentin Mérigot
    In Optimal Transportation: Theory and Applications, London Mathematical Society Lecture Note Series 413, pp 288–306 [doi]
  18. Geometric inference for probability measures.
    Frédéric Chazal, David Cohen-Steiner, Quentin Mérigot
    Foundation of Computational Mathematics (FOCM) 11, 733-751 (2011) [doi].
  19. Boundary measures for geometric inference.
    Frédéric Chazal, David Cohen-Steiner, Quentin Mérigot
    Foundatio of Computational Mathematics (FOCM)10, 221-240 (2010) [doi].
  20. Feature Preserving Mesh Generation from 3D Point Clouds.
    Nader Salman, Mariette Yvinec, Quentin Mérigot
    Computer Graphics Forum 29 (5) 1623–1632, 2010 (also Proc. SGP 2010) [doi].
  21. One Point Isometric Matching with the Heat Kernel.
    Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, Leonidas Guibas
    Computer Graphics Forum 29 (5) 1555–1564, 2010 (also Proc. SGP 2010) [doi].
  22. Voronoi-based Curvature and Feature Estimation from Point Clouds.
    Quentin Mérigot, Maks Ovsjanikov, Leonidas Guibas
    IEEE Transactions on Visualization and Computer Graphics (TVCG) 17 (6) 743–756, 2011 [doi].
  23. Anosov AdS representations are quasi-Fuchsian.
    Thierry Barbot, Quentin Mérigot
    Groups, Geometry and Dynamics 6(3), 441-483 (2012) [doi].

Notes, thesis, surveys

  1. Inference of curvature using tubular neighborhoods,
    Frédéric Chazal, David Cohen-Steiner, André Lieutier, Quentin Mérigot, Boris Thibert
    Modern approaches to discrete curvature, Springer LNM, to appear
  2. A comparison of two dual methods for discrete optimal transport.
    Quentin Mérigot
    Geometric Science of Information, Springer LNCS 8085, 389-396, 2013 [doi]
  3. Geometric structure detection in point clouds
    Thèse de doctorat, Université de Nice Sophia-Antipolis.