Research · Teaching · Software Quentin Mérigot

I am a researcher in applied mathematics and computer science working for CNRS at Ceremade, Université Paris-Dauphine. Before this, I was in Laboratoire Jean Kuntzmann in Grenoble.

Research topics: Computational geometry, geometric inference, computational optimal transport. More generally, I'm interested in the discretization of geometric variational and inverse problems.

Address: Ceremade, Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex


  1. Minimal geodesics along volume preserving maps, through semi-discrete optimal transport
    Q. Mérigot, J.M. Mirebeau
  2. Discrete optimal transport: complexity, geometry and applications
    Q. Mérigot, É. Oudet


  1. Discretization of functionals involving the Monge-Ampère operator
    J.D. Benamou, G. Carlier, Q. Mérigot, É. Oudet
    Numerische Mathematik, to appear.
  2. Far-field reflector problem and intersection of paraboloids
    P. Machado Manhães de Castro, Q. Mérigot, B. Thibert
    Numerische Mathematik, to appear (also Proc. SoCG 2014)
  3. Handling convexity-like constraints in variational problems
    Q. Mérigot, É. Oudet
    SIAM Journal on Numerical Analysis, 52 (5), 2466–2487, 2014.
  4. Robust Geometry Estimation using the Generalized Voronoi Covariance Measure
    L. Cuel, J.O. Lachaud, Q. Mérigot, B. Thibert
    SIAM Journal on Imaging Science (SIIMS), 8(2), 1293–1314, 2015.
  5. On the reconstruction of convex sets from random normals measurements
    H. Abdallah, Q. Mérigot
    Discrete and Computational Geometry 53(3), 569–586, 2015 (also Proc SoCG 2014)
  6. Far-field reflector problem under design constraints
    J. André, D. Attali, Q. Mérigot, B. Thibert
    International Journal of Computational Geometry and Applications (IJCGA), 25 (2), 143-162, 2015.
  7. Lower bounds for k-distance approximation.
    Q. Mérigot
    Proceedings of the 29th ACM Symposium on Computational Geometry, 2013
  8. Shape Matching via Quotient Spaces.
    M. Ovsjanikov, Q. Mérigot, V. Pătrăucean, L. Guibas
    Computer Graphics Forum 32 (5) 1–11, 2013 (also Proc SGP 2013).
  9. Witnessed k-distance.
    L. Guibas, Q. Mérigot, D. Morozov
    Discrete and Computational Geometry, 49 (1) 22–45, 2013 (also Proc SoCG 2011).
  10. A multiscale approach to optimal transport.
    Q. Mérigot
    Computer Graphics Forum 30 (5) 1583–1592, 2011 (also Proc SGP 2011).
  11. Size of the medial axis and stability of Federer’s curvature measures
    Q. Mérigot
    In Optimal Transportation: Theory and Applications, London Mathematical Society Lecture Note Series 413, pp 288–306
  12. Geometric inference for probability measures.
    F. Chazal, D. Cohen-Steiner, Q. Mérigot
    Foundations of Computational Mathematics 11, 733-751 (2011).
  13. Boundary measures for geometric inference.
    F. Chazal, D. Cohen-Steiner, Q. Mérigot
    Foundation of Computational Mathematics 10, 221-240 (2010).
  14. Feature Preserving Mesh Generation from 3D Point Clouds.
    N. Salman, M. Yvinec, Q. Mérigot
    Computer Graphics Forum 29 (5) 1623–1632, 2010 (also Proc. SGP 2010).
  15. One Point Isometric Matching with the Heat Kernel.
    M. Ovsjanikov, Q. Mérigot F. Mémoli, L. Guibas
    Computer Graphics Forum 29 (5) 1555–1564, 2010 (also Proc. SGP 2010).
  16. Voronoi-based Curvature and Feature Estimation from Point Clouds.
    Q. Mérigot, M. Ovsjanikov, L. Guibas
    IEEE Transactions on Visualization and Computer Graphics 17 (6) 743–756, 2011.
  17. Anosov AdS representations are quasi-Fuchsian.
    T. Barbot, Q. Mérigot
    Groups, Geometry and Dynamics 6(3), 441-483 (2012).

Notes, thesis, surveys

  1. A comparison of two dual methods for discrete optimal transport.
    Geometric Science of Information, LNCS 8085, 389-396, 2013
    Q. Mérigot
  2. Geometric structure detection in point clouds
    Thèse de doctorat, Université de Nice Sophia-Antipolis.