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Abstract We study the boundary measures of compact subsets of the d-
dimensional Euclidean space, which are closely related to Federer’s curvature
measures. We show that they can be computed efficiently for point clouds
and suggest these measures can be used for geometric inference. The main
contribution of this work is the proof of a quantitative stability theorem for
boundary measures using tools of convex analysis and geometric measure
theory. As a corollary we obtain a stability result for Federer’s curvature
measures of a compact set, showing that they can be reliably estimated from
point-cloud approximations.
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1 Introduction

Recently there has been a growing interest in applying geometric methods
to data analysis. This approach uses well-known geometric or topological
properties such as curvature and intrinsic dimension in order to describe
and understand the structure of data represented by high dimensional point
clouds.

The general problem of geometric inference can be stated as follows:
given a noisy point cloud approximation C of a compact set K ⊆ Rd, how
can we recover geometric and topological informations about K, such as
its curvature, sharp edges, boundaries, Betti numbers or Euler-Poincaré
characteristic, etc., knowing only the point cloud C ?
∗Geometrica, INRIA Saclay, France
†Geometrica, INRIA Sophia-Antipolis, France
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Previous work. For smooth surfaces embedded in R3, inference problems
are by now well-mastered. In particular, several algorithms (e.g. [2]) allow to
reconstruct a topologically correct and geometrically close piecewise-linear
approximation from a sufficiently dense point cloud. From these reconstruc-
tions, differential quantities such as curvature tensors can be reliably esti-
mated [10]. Most of these surface reconstruction algorithms are based on the
study of the shape of Voronoi cells for points sampled on smooth surfaces.
For smooth submanifolds in higher dimensional spaces, similar ideas lead to
provable local dimension estimation algorithms [12]. It has also been shown
that appropriate offsets, or equivalently α-shapes [13], provided reconstruc-
tions with the correct homotopy type [16] under sampling conditions similar
to the one used in 3 dimensional surface reconstruction. This last result was
recently extended to compact sets more general than smooth submanifolds
[6], using a weaker sampling condition. Unfortunately, all these approaches
are impractical in high dimension since they require computing the Voronoi
diagram, which has exponential complexity with respect to ambient dimen-
sion. Finally, it has been shown that persistent homology can be used to
reliably estimate Betti numbers of a wide class of compact sets under an even
weaker sampling condition [8, 9]. Computing persistent homology used to
require the computation of a Delaunay triangulation, which is impractical in
high dimension. Approximate computations are made possible by using wit-
ness complexes [11]. However, approximate computations are made possible
by using witness complexes [11]. This approach proved useful in particular
in the study of the space of natural images [5].

As described above, substantial progress was recently made for inferring
topological invariants of possibly non-smooth sampled objects embedded in
arbitrary dimensional spaces. However, very little is known on how to in-
fer more geometric invariants, such as curvatures or singularities, for such
objects. In this paper, we address this problem from a particular angle.
Given a compact set K ⊆ Rd, our approach consists in exploiting the ge-
ometric information contained in the growth of the volume of its offsets
Kr = {x ∈ Rd ; d(x,K) 6 r}. The well-known tube formula states that for
smooth [21] or convex [19] objects, this volume is a polynomial in r pro-
vided r is small enough. The coefficients of this polynomial, called intrinsic
volumes, Lipschitz-Killing curvatures, Minkowski functionals, or Quermass-
integrale in the literature, encode important geometric information about
K, such as dimension, curvatures, angles of sharp features, or even Euler
characteristic. Federer [14] later showed that such a polynomial behavior
actually always holds as long as r does not exceed the reach of K, which is
well known in computational geometry as the (minimum of) the local feature
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size, that is, the minimum distance between K and its medial axis. Also,
he introduced the important notion of curvature measure, which loosely
speaking details the contribution of each part of K to the intrinsic volumes,
and hence gives local information about curvatures, dimensions, and sharp
features angles.

Contributions. Curvature measures have been studied extensively in dif-
ferential geometry [21] and geometric measure theory [14]. In this paper,
we show that they can also prove useful from the perspective of geometric
inference.

Given a compact set K ∈ Rd, we define the boundary measure of K
at scale r as the mass distribution µK,Kr on K such that µK,Kr(B) is the
contribution of a region B ⊂ K to the volume of Kr. The tube formula
states that, when K has positive reach, the curvature measures of K can be
retrieved if one knows the boundary measures at several scales. The usability
of boundary measures for geometric inference depends on the following two
questions:

1. is it practically feasible to compute the boundary measure of a point
cloud C ⊆ Rd ?

2. if C is a good approximation of K (i.e. dense enough and without too
much noise), does the boundary measure µC,Cr carry approximately
the same geometric information as µK,Kr?

The answer to the first question is given in section 5 in the form of a very
simple Monte-Carlo algorithm allowing to compute the boundary measure
of a point cloud C embedded in the space Rd. Standard arguments show
that if C has n points, an ε-approximation of µC,Cr can be obtained with
high probability (e.g. 99%) in time O(dn2 ln(1/ε)/ε2) without using any
sophisticated data structure. A more careful analysis shows that the n2

behavior can be replaced by n times an appropriate covering number of C,
which indicates that the cost is linear both in n and d for low entropy point
clouds. Hence this algorithm is practical at least for moderate size point
clouds in high dimension.

The main contribution of this article is the proof of a stability theorem
for boundary measures, which also gives a positive and quantitative answer
to the second question. The following statement is a simplified version of the
theorem. The set of compact subsets of Rd is endowed with the Hausdorff
distance dH while the set of mass distributions on Rd with the so-called
bounded-Lipschitz distance dbL (which will be defined in Section 4).
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Theorem 4.5. For every compact set K ⊆ Rd, there exists some constant
C(K) such that

dbL(µK,Kr , µC,Cr) 6 C(K)dH(C,K)1/2

as soon as dH(C,K) is small enough.

In the sequel we will make this statement more precise by giving ex-
plicit constants. A similar stability result for a generalization of curvature
measures is deduced from this theorem. At the heart of these two stability
results is a L1 stability property for (closest point) projections on compact
sets. The proof of the projection stability theorem involves a new inequality
in convex analysis, which may also be interesting in its own right. Recall
that a subset S of Rd is called (d − 1)-rectifiable if it can be written as a
countable union of patches of Lipschitz hypersurfaces (see e.g. [15]).

Theorem 3.5. Let E be an open subset of Rd with (d−1)–rectifiable bound-
ary, and f, g be two convex functions such that diam(∇f(E)∪∇g(E)) 6 k.
Then there exists a constant C(d,E, k) such that for ‖f − g‖∞ small enough,

‖∇f −∇g‖L1(E) 6 C(d,E, k) ‖f − g‖1/2∞ .

Outline. In section 2 we introduce the mathematical objects involved in
this article, in particular Hausdorff measures, boundary and curvature mea-
sures. In section 3 we prove the main technical result of this paper con-
cerning the gradient of convex functions and show how this leads to the
projection stability theorem as well as to the stability of a variant of bound-
ary measures. Section 4 presents the stability result for boundary measures
from which one can deduce that curvature measures are also stable for the
Hausdorff distance. Finally in the last section we show how Monte-Carlo
methods can be applied to the computation of boundary measures of point
clouds.

2 Mathematical Preliminaries

In this section, we introduce the mathematical objects which will be used
throughout the article.

Measures. A (nonnegative) measure µ associates to any (Borel) subset
B of Rd a nonnegative number µ(B). It should also enjoy the following
additivity property: if (Bi) is a countable family of disjoint subsets, then
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µ(∪Bi) =
∑

i µ(Bi). A measure on Rd should be seen as a mass distribution
on Rd, which one can probe using Borel sets: µ(B) is the mass of µ contained
in B. The restriction of a measure µ to a subset C ⊆ Rd is the measure µ|C
defined by µ|C(B) = µ(B∩C). The simplest examples of measures are Dirac
masses which, given a point x ∈ Rd, are defined by δx(B) = 1 if and only
if x is in B. In what follows, we will also use the k-dimensional Hausdorff
measures Hk which, loosely speaking, associate to any k-dimensional subset
of Rd its k-dimensional area (0 6 k 6 d). We refer to [15] for more details.
For example, if S ⊂ Rd is k-dimensional, Hk|S models a mass distribution
uniformly distributed on S.

Boundary and curvature measures of a compact set. We begin
with some well-known facts about the distance function and projections
on a compact set K ⊆ Rd. The distance to K is defined as dK(x) =
miny∈K ‖x− y‖. The medial axis of K, denoted by M(K), is the set of
points of Rd \K which admit more than one closest point on K (see figure
2.1). The projection on K maps any point x outside the medial axis to its
unique closest point on K, pK(x). Since medial axes always have zero Hd
measure, projections are defined almost everywhere. The r-offset of a subset
K ⊆ Rd is the set of points at distance at most r from K, and is denoted
by Kr.

x

Kr

K

B

pK(x)

p−1
K (B)

M(K)

Figure 2.1: Boundary measure of K ⊂ Rd.

As mentioned in the introduction, there is a lot of geometric information
lying in the intensity of the contribution of a part of K to the volume of
Kr. To make this statement precise, we introduce the notion of boundary
measure:

Definition. If K is a compact subset and E a domain of Rd, the boundary
measure µK,E is defined as follows: for any subset B ⊆ Rd, µK,E(B) is the
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d-volume of the set of points of E whose projection on K is in B, i.e.

µK,E(B) = Hd(p−1
K (B ∩K) ∩ E).

We will be particulary interested in the boundary measure µK,Kr , see
figure 2.1. While the above definition makes sense for any compact K ⊆ Rd,
boundary measures have been mostly studied in the convex case and in the
smooth case. Let us first give two examples in the convex case. Let S be
a unit-length segment in the plane with endpoints a and b. The set Sr is
the union of a rectangle of dimension 1 × 2r whose points project on the
segment and two half-disks of radius r whose points are projected on a and
b. It follows that

µS,Sr = 2r H1
∣∣
S

+
π

2
r2δa +

π

2
r2δb.

If P is a convex solid polyhedron of R3, F its faces, E its edges and V its
vertices, then one can see that:

µP,P r = H3
∣∣
P

+ r
∑
f∈F
H2
∣∣
f

+ r2
∑
e∈E

K(e) H1
∣∣
e

+ r3
∑
v∈V

K(v)δv

where K(e) the angle between the normals of the faces adjacent to the edge e
and K(v) the solid angle formed by the normals of the faces adjacent to v. As
shown by Steiner and Minkowski, for general convex polyhedra the measure
µK,Kr can be written as a sum of weighted Hausdorff measures supported
on the i-skeleton of K, and whose local density is the local external dihedral
angle.

Weyl [21] proved that the polynomial behavior for r 7→ µK,Kr shown
above is also true for small values of r when K is a compact and smooth
submanifold of Rd. Moreover he also proved that the coefficients of this
polynomial can be computed from the second fundamental form of K. For
example, if K is a d-dimensional subset with smooth boundary, then we
have for sufficiently small r > 0 and for all B ⊂ K:

µK,Kr(B) =
d∑
i=0

ωi Φd−i
K (B) ri (2.1)

where Φd
K(B) is (half of) the d-volume of B and Φk

K (k < d) are the (signed)
measures with density given by symmetric functions of the principal curva-
tures of ∂K:

Φk
K(B) = const(d, k)

∫
B

 ∑
i(1)<···<i(k)

κi(1)(p) . . . κi(k)(p)

dp. (2.2)
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Hence the principal curvatures of K can be retrieved from the curvature
measures Φk

K — at least in principle. Indeed, for every p ∈ ∂K one has:

σk(p) :=
∑

i(1)<···<i(k)

κi(1)(p) . . . κi(k)(p)

= const(d, k) lim
r→0

Φk
K(B(p, r))

Hd−1(∂K ∩ B(p, r))
.

Knowing all the elementary symmetric functions σ1(p), . . . , σd−1(p) of the
principal curvatures at p is enough to recover them (up to a permutation).
Formulas similar to equations (2.1)–(2.2) exist for higher codimension sub-
manifolds (see e.g. [21]). In general, if K has intrinsic dimension n, then
the measures Φk

K vanish identically when k > n. Hence, these measures also
encode the dimension of K.

In [14], Federer generalized Steiner’s and Weyl’s tube formula to the class
of compact sets with positive reach. A compact set K ⊆ Rd is said to have
a reach greater than R if the minimum distance between K and its medial
axis is greater than R, i.e. if the projection pK is well defined everywhere
in the interior of KR. What Federer showed is that for any compact set
K with reach at least R, there exists a unique set of signed measures Φk

K ,
which he called curvature measures, such that equation 2.1 holds. From the
discussion above, we see that curvature measures encode local dimensions,
angles of sharp features of various dimensions, and principal curvatures. The
following generalization of the Gauss-Bonnet theorem shows that they also
contain topological information about K:

Theorem. Given any compact set K with positive reach, Φ0
K(K) is equal

to the Euler-Poincaré characteristic of K.

The curvature measures can be retrieved from the knowledge of bound-
ary measures µK,Kr by polynomial fitting (cf. Section 4). Hence all the
information contained in curvature measures is also contained in boundary
measures, which is our main motivation for studying them.

3 Stability of boundary measures

In this section, we suppose that E is a fixed open set with rectifiable bound-
ary, and we obtain a quantitative stability theorem for the map K 7→ µK,E .
What we mean by stable is that if two compact sets K and K ′ are close,
then the measures µK,E and µK′,E are also close. In order to be able to
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formulate a precise statement we need to choose a notion of distance on the
space of compact subsets of Rd and on the set of measures on Rd.

To measure the distance between two compact subsets K and K ′ of Rd,
we will use the Hausdorff distance: dH(K,K ′) is by definition the small-
est positive constant η such that both K ′ ⊆ Kη and K ⊆ K ′η. It is
also the uniform distance between the two distance functions dK and dK′ :
dH(K,K ′) = supx∈Rd |dK(x)− dK′(x)|. The next paragraph describes the
distance we use to compare measures.

Wasserstein distance. The Wasserstein distance (of exponent 1) be-
tween two measures µ and ν on Rd having the same total mass µ(Rd) =
ν(Rd) is a nonnegative number which quantifies the cost of the optimal
transportation from the mass distribution defined by µ to the mass distri-
bution defined by µ (cf. [20]). It is denoted by dW(µ, ν). More precisely, it
is defined as

dW(µ, ν) = inf
X,Y

E[d(X,Y )]

where the infimum is taken on all pairs of Rd-valued random variables X
and Y whose law are µ and ν respectively. Notice that when λ is a finite
measure on a space X whose mass is not one, the expectation Eλ(f) should
be interpreted as the unnormalized mean

∫
X f(x)dλ(x).

This distance is also known as the earth-mover distance, and has been
used in vision [17] and image retrieval [18]. One of the interesting properties
of the Wasserstein distance is the Kantorovich-Rubinstein duality theorem.
Recall that a function f : Rd → R is 1-Lipschitz if for every choice of x and
y, |f(x)− f(y)| 6 ‖x− y‖.
Theorem (Kantorovich-Rubinstein). If µ and ν are two probability mea-
sures on Rd, then

dW(µ, ν) = sup
f

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
where the supremum is taken on all 1-Lipschitz function in Rd.

The Lipschitz function f in the theorem can be thought as a way of
probing the measure µ. For example, if f is a tent function, e.g. f(y) =
(1−||x−y||)+, then

∫
fdµ gives an information about the local density of µ

near x. The Kantorovich-Rubinstein theorem asserts that if two measures µ
and ν are Wasserstein-close, then one can control the probing error between
µ and ν by Lipschitz functions.

8



The following proposition reduces the stability result of the map K 7→
µK,E with respect to the Wasserstein distance to a stability result for the
map K 7→ pK |E .

Proposition 3.1. If E is a subset of Rd, and K and K ′ two compact sets,
then

dW(µK,E , µK′,E) 6
∫
E
‖pK(x)− pK′(x)‖ dx.

Proof. Let Z be a random variable whose law is Hd∣∣
E

. Then, X = pK ◦ Z
and Y = pK′ ◦Z have law µK,E and µK′,E respectively. Hence by definition,
dW(µK,E , µK′,E) 6 E(d(pK ◦ Z,pK′ ◦ Z)), which is the desired bound.

A L1 stability theorem for projections. From now on, if E is a subset
of Rd, f an integrable function on E, and g a continuous function on E, we
define the two following norms:

‖f‖L1(E) =
∫
E
‖f(x)‖ dx and ‖g‖∞,E = sup

x∈E
‖g(x)‖ .

The key result of this paper is the following upper bound for the L1-norm
‖pK − pK′‖L1(E), when K and K ′ are two Hausdorff-close compact sets:

Theorem 3.2 (Projection Stability). Let E be an open set in Rd with rectifi-
able boundary, K and K ′ be two compact subsets of Rd and RK = ‖dK‖∞,E.
Then, there is a constant C1(d) such that

‖pK − pK′‖L1(E) 6 C1(d)[Hd(E) + diam(K)Hd−1(∂E)]×
√
RKdH(K,K ′)

assuming dH(K,K ′) 6 min(RK ,diam(K), diam(K)2/RK).

The question of whether projection maps are stable has already drawn
attention in the past. In particular, Federer proved the following result
in [14]:

Theorem. Let R be a positive number, Kn ⊆ Rd be a sequence of compact
sets whose reach is greater than R, which Hausdorff-converges to some com-
pact K ⊆ Rd with reach(K) > R. Then pKn converges to pK uniformly on
KR as n grows to infinity.

A drawback of this theorem is that it does not say anything about the
speed of convergence. But more importantly, the very strong assumptions
that all compact sets in the sequence have their reach bounded from below

9



makes it completely unusable in the setting of geometric inference: indeed,
since the reach of a point cloud is the minimum distance between any two of
its points, if a sequence of point clouds Cn converges to some non-discrete
compact set K (e.g. a segment) then necessarily limn reach(Cn) = 0. In fact
if K is the union of two distinct points x and y, and Kn = {x+ 1

n(x−y), y},
pKn does not converge uniformly to pK near the medial hyperplane of x
and y. So one cannot hope for a generalization of the above theorem to a
uniform convergence result of pKn to pK on an arbitrary open set E.

From the stability of the gradient of the distance function (see [6]) one
can deduce that the projections pK and pKn can differ dramatically only near
the medial axis of K. This makes it reasonable to expect a L1 convergence
property of the projections, i.e. if Kn converges to K, then

lim
n

∫
E
‖pKn(x)− pK(x)‖ dx = 0.

Unfortunately, for a generic compact set, the medial axis M(K) is dense
in Rd (see [22] for a proof). In this case, every point in Rd is (arbitrarily)
close to a point inM(K), and the above remark is of little help. The actual
proof of the projection stability theorem relies on a new theorem in convex
analysis, and is postponed to the next section.

P`

E

R

`
`

R

E S`

Figure 3.2: Optimality of the stability theorem.

Let us now comment on the optimality of this projection stability the-
orem. First, the speed of convergence of µK′,E to µK,E cannot be (in gen-
eral) faster than O(dH(K,K ′)1/2). Indeed, if D is the closed unit disk in
the plane, and P` is a regular polygon inscribed in D with sidelength `,
then dH(D,P`) ' `2. Now we let E be the disk of radius 1 + R. Then,
a constant fraction of the mass of E will be projected onto the vertices
of P` by the projection pP`

(lightly shaded area in figure 3.2). Now, the
cost of spreading out the mass concentrated on these vertices to get a uni-
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form measure on the circle is proportional to the distance between con-
secutive vertices, so dW(µD,E , µP`,E) = Ω(`). Hence, by proposition 3.1,
‖pD − pP`

‖L1(E) = Ω(`) = Ω(dH(D,P`)1/2). Note that this O(dH(K,K ′)1/2)
behavior does not come from the curvature of the disk, since one can also
find an example of a family of compacts S` made of small circle arcs con-
verging to the unit segment S such that ‖pS − pS`

‖L1(E) = Ω(dH(S, S`)1/2)
(see fig. 3.2).

The second remark concerning the optimality of the theorem is that the
second term of the bound involving Hd−1(∂E) cannot be avoided. Indeed,
let us suppose that a bound ‖pK − pK′‖L1(E) 6 C(K)Hd(E)

√
ε were true

around K, where ε is the Hausdorff distance between K and K ′. Now let
K be the union of two parallel hyperplanes at distance R intersected with
a big sphere centered at a point x of their medial hyperplane M . Let Eε
be a ball of radius ε/2 tangent to M at x and Kε be the translate by ε
of K along the common normal of the hyperplanes such that the ball Eε
lies in the slab bounded by the medial hyperplanes of K and Kε. Then,
‖pK − pK′‖L1(Eε) ' R × Hd(Eε), which exceeds the assumed bound for a
small enough ε.

Proof of the projection stability theorem. The projection stability
theorem will follow from a more general theorem on the L1 norm of the dif-
ference between the gradients of two convex functions defined on some open
set E with rectifiable boundary. The connection between projections and
convex analysis is that any projection pK derives from a convex potential vK :

Lemma 3.3. The function vK : Rd → R defined by vK(x) = ‖x‖2− dK(x)2

is convex with gradient ∇vK = 2pK almost everywhere.

Proof. By definition, vK(x) = supy∈K ‖x‖2 − ‖x− y‖2 = supy∈K vK,y(x)
with vK,y(x) = 2〈x|y〉 − ‖y‖2. Hence vK is convex as a supremum of
affine functions, and is differentiable almost everywhere. Then, ∇vK(x) =
2dK(x)∇xdK − 2x. The equality ∇dK(x) = (pK(x)− x)/dK(x), valid when
x is not in the medial axis, concludes the proof.

Hence if K, K ′ are two compact subsets of Rd, we have:

‖pK − pK′‖L1(E) = 1/2 ‖∇vK −∇vK′‖L1(E) .

Moreover, denoting by RK = ‖dK‖∞,E , the two following properties for the
functions vK and vK′ can be deduced from a simple calculation:
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Lemma 3.4. If dH(K,K ′) 6 min(RK ,diam(K)), then

‖vK − vK′‖∞,E := sup
x∈E

∣∣dK(x)2 − dK′(x)2
∣∣ 6 3dH(K,K ′)RK

diam(∇vK(E) ∪∇vK′(E)) 6 3 diam(K).

Let us now state the stability result for gradients of convex functions:

Theorem 3.5. Let E be an open subset of Rd with rectifiable boundary, and
f, g be two locally convex functions on E such that diam(∇f(E)∪∇g(E)) 6
k. Then,

‖∇f −∇g‖L1(E) 6 C2(n)

×
(
Hd(E) + (k + ‖f − g‖1/2∞,E)Hd−1(∂E)

)
‖f − g‖1/2∞,E .

We note that this result may be viewed as the converse of classical in-
equalities (Poincaré inequalities) stating that if the gradients of two func-
tions are close, then the two functions are also (up to an additive constant)
close. Such converse results (reverse Poincaré inequalities) have been the
subject of intense research in functional analysis (e.g. [3, 4]), but in a rather
different setting.

The Projection Stability Theorem is easily deduced from Theorem 3.5
and Lemmas 3.3 and 3.4. We now turn to the proof of the 1-dimensional
case of Theorem 3.5. The general case will follow using an argument of
integral geometry – i.e. we will integrate the 1-dimensional inequality over
the set of lines of Rd and use the Cauchy-Crofton formulas (3.3) and (3.4)
below to get the d-dimensional inequality.

Cauchy-Crofton formulas give a way to compute the volume of a set E
in terms of the expectation of the length of E∩ ` where ` is a random line in
Rd. More precisely, if one denotes by Ld the set of oriented lines of Rd, then
denoting by dLd the properly normalized rigid motion invariant measure on
Ld, we have

Hd(E) =
1

ωd−1

∫
`∈Ld

length(` ∩ E)dLd (3.3)

where ωd−1 is the (d − 1)-volume of the unit sphere in Rd. If S is a rec-
tifiable hypersurface of Rd – i.e. a countable union of patches of Lipschitz
hypersurfaces, see [15] –, then

Hd−1(S) =
1

2βd−1

∫
`∈Ld

#(` ∩ S)dLd (3.4)

where βd−1 is the (d− 1)-volume of the unit ball in Rd−1.
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Proposition 3.6. If I is an interval, and ϕ : I → R and ψ : I → R
are two convex functions such that diam(ϕ′(I) ∪ ψ′(I)) 6 k, then letting
δ = ‖ϕ− ψ‖L∞(I),∫

I

∣∣ϕ′ − ψ′∣∣ 6 8π(length(I) + k + δ1/2)δ1/2.

Proof. Since ϕ and ψ are convex, their derivatives are non-decreasing. Let
V be the closure of the set of points (x, y) in I × R such that y is in the
segment [ϕ′(x), ψ′(x)] (or [ψ′(x), ϕ′(x)] if ϕ′(x) > ψ′(x)). By definition of
V ,
∫
I |ϕ′ − ψ′| = H2(V ).

If D is a disk included in V and [x0, x1] ⊂ I is the projection of D on the
x-axis , then the sign of the derivative of the difference κ = ϕ− ψ does not
change on [x0, x1]. Assuming w.l.o.g. that κ is non decreasing on [x0, x1],
we have |κ(x0)− κ(x1)| = ∫ x1

x0
|κ′| > H2(D)

But since ‖κ‖∞ = δ, the area of D cannot be greater than 2δ. Thus, if
p is any point of V , for any δ′ > δ the disk B(p,

√
2δ′/π), whose area is 2δ′,

necessarily intersects the boundary ∂V . This proves that V is contained in
the offset (∂V )

√
2δ/π. It follows that:∫

I

∣∣ϕ′ − ψ′∣∣ 6 H2
(

(∂V )
√

2δ/π
)

(3.5)

length(I)

k

graph(φ′)

graph(ψ′)

B(x,
√

2δ′/π)

V

Figure 3.3: Proof of the 1-dimensional inequality.

Now, ∂V can be written as the union of two xy-monotone curves Φ and
Ψ joining the lower left corner of V and the upper right corner of V so that
(∂V )r ⊆ Φr ∪Ψr.

We now find a bound for H2(Φr) (the same bound will of course apply to
Ψ). Since the curve Φ is xy-monotone, we have length(Φ) 6 length(I) + k.
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Thus, for any r > 0 there exists a subset X ⊆ Φ of N = d(length(I) + k)/re
points such that Φ ⊆ Xr, implying

H2(Φr) 6 H2(X2r) 6 4πr2N 6 4πr(length(I) + k + r). (3.6)

Using equations (3.5) and (3.6), and
√

2δ/π 6
√
δ, one finally obtains:∫

I

∣∣ϕ′ − ψ′∣∣ 6 H2
(

Φ
√

2δ/π ∪Ψ
√

2δ/π
)

6 8π(length(I) + k +
√
δ)
√
δ.

Proof of Theorem 3.5. The 1-dimensional case follows directly from propo-
sition 3.6: in this case, E is a countable union of intervals on which f and
g satisfy the hypothesis of the proposition. Summing the inequalities gives
the result with C2(1) = 8π.

We now turn to the general case. Given any L1 vector-field X one has∫
E
‖X‖dx =

d

2ωd−2

∫
`∈Ld

∫
y∈`∩E

|〈X(y)|u(`)〉|dyd`

where u(`) is a unit directing vector for ` (see Lemma III.4 in [7] for a proof
of this formula). Letting X = ∇f − ∇g, f` = f |`∩E and g` = g|`∩E , one
gets, with D(d) = d/(2ωd−2),∫

E
‖∇f −∇g‖ = D(d)

∫
`∈Ld

∫
y∈`∩E

|〈∇f −∇g|u(`)〉|dyd`

= D(d)
∫
`∈Ld

∫
y∈`∩E

∣∣f ′` − g′`∣∣ dyd`.

The functions f` and g` satisfy the hypothesis of the one-dimensional
case, so that for each choice of `, and with δ = ‖f − g‖L∞(E),∫

y∈`∩E

∣∣f ′` − g′`∣∣ dy 6 8πδ1/2 × (H1(E ∩ `) + (k + δ1/2)H0(∂E ∩ `)).

It follows by integration on Ld that∫
E
‖∇f −∇g‖ 6 8πD(d)δ1/2

×
(∫
Ld

H1(E ∩ `)dLd + (k + δ1/2)
∫
Ld

H0(∂E ∩ `)dLd
)
.

The formula (3.3) and (3.4) show that the first integral in the second term
is equal (up to a constant) to the volume of E and the second one to the
(d−1)-measure of ∂E. This proves the theorem with C2(d) = 8πD(d)(ωd−1+
2βd−1).
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3.1 Stability of the pushforward of a measure by a projection

The boundary measure defined above are a special case of pushforward of
a measure by a function. The pushforward of a measure µ on Rd by the
projection pK is another measure, denoted by pK#µ, concentrated on K
and defined by the formula: pK#µ(B) = µ(p−1

K (B)).
The stability results for the boundary measures K 7→ µK,E can be gen-

eralized to prove the stability of the map K 7→ pK#µ where µ has a density
u : Rd → R+, which means that µ(B) =

∫
B u(x)dx. We need the measure µ

to be finite, which is the same as asking that the function u belongs to the
space L1(Rd) of integrable functions.

We also need the function u ∈ L1(Rd) to have bounded variation. We
recall the following basic facts of the theory of functions with bounded vari-
ation, taken from [1]. If u is an integrable function on Rd, the total variation
of u is

var(u) = sup
{∫

Rd

udivϕ;ϕ ∈ C1
c (Rd), ‖ϕ‖∞ 6 1

}
.

A function u ∈ L1(Rd) has bounded variation if var(u) < +∞. The set
of functions of bounded variation on Rd is denoted by BV(Rd). We also
mention that if u is Lipschitz, then var(u) = ‖∇u‖L1(Rd).

Theorem 3.7. Let µ be a measure with density u ∈ BV(Rd) with respect to
the Lebesgue measure, and K be a compact subset of Rd. We suppose that
the support of u is contained in the offset KR. Then, if dH(K,K ′) is small
enough,

dW(pK#µ, pK′#µ) 6 C2(n)
(
‖u‖L1(KR) + diam(K) var (u)

)
×
√
RdH(K,K ′)1/2.

Proof. We begin with the additional assumption that u has class C∞. The
function u can be written as an integral over t ∈ R of the characteristic
functions of its superlevel sets Et = {u > t}, i.e. u(x) =

∫∞
0 χEt(x)dt.

Fubini’s theorem then ensures that for any 1-Lipschitz function f defined
on Rd with ‖f‖∞ 6 1,

pK′#µ(f) =
∫

Rd

f ◦ pK′(x)u(x)dx

=
∫

R

∫
Rd

f ◦ pK′(x)χ{u>t}(x)dxdt.
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By Sard’s theorem, for almost any t, ∂Et = u−1(t) is a (n−1)-rectifiable
subset of Rd. Thus, for those t the Projection Stability Theorem implies,
for ε = dH(K,K ′) 6 ε0 = min(R,diam(K),diam(K)2/RK),∫
Et

|f ◦ pK(x)− f ◦ pK′(x)|dx 6 ‖pK − pK′‖L1(Et)

6 C2(n)[Hd(Et) + diam(K)Hn−1(∂Et)]
√
Rε.

Putting this inequality into the last equality gives∣∣pK#µ(f)− pK′#µ(f)
∣∣ 6 C2(n)

(∫
R
Hd(Et) + diam(K)Hn−1(∂Et)dt

)√
Rε.

Using Fubini’s theorem again and the coarea formula one finally gets that∣∣pK#µ(f)− pK′#µ(f)
∣∣ 6 C2(n)

(
‖u‖L1(KR) + diam(K) var(u)

)√
Rε.

Thanks to Kantorovich-Rubinstein theorem, this yields the desired inequal-
ity on dW(pK#µ(f), pK′#µ(f)), and concludes the proof of the theorem in
the case of a C∞ function u. To get the general case, one has to approximate
the bounded variation function u by a sequence of C∞ functions (un) such
that both ‖u− un‖L1(KR) and |var(u)− var(un)| converge to zero. This is
always possible thanks to theorem 3.9 in [1].

4 Stability of curvature measures

The definition of Wasserstein distance assumes that both measures are pos-
itive and have the same mass. While this is true for µK,E and µK′,E (whose
mass is the volume of E), this is not the case anymore when considering
µK,Kr and µK′,K′r whose mass are respectively Hd(Kr) and Hd(K ′r). We
thus need to introduce another distance on the space of (signed) measures.

Distance between two boundary measures. The Kantorovich-Rubin-
stein theorem makes it natural to introduce the bounded-Lipschitz distance
between two measures µ and ν as follows:

dbL(µ, ν) = sup
f∈BL1(Rd)

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
the supremum being taken on the space of 1-Lipschitz functions f on Rd

such that supRd |f | 6 1. With this definition, one gets:
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Proposition 4.1. If K,K ′ are compact subsets of Rd,

dbL(µK,Kr , µK′,K′r) 6
∫
Kr∩K′r

‖pK(x)− pK′(x)‖ dx+Hd(Kr∆K ′r).

where Kr∆K ′r is the symmetric difference between the offsets Kr and K ′r

Proof. Let ϕ be a 1-Lipschitz function on Rd bounded by 1. Using the
change-of-variable formula one has:∣∣∣∣∫ ϕ(x)dµK,Kr −

∫
ϕ(x)dµK′,K′r

∣∣∣∣
=
∣∣∣∣∫
Kr

ϕ ◦ pK(x)dx−
∫
K′r

ϕ ◦ pK′(x)dx
∣∣∣∣

6
∫
K′r∩Kr

|ϕ ◦ pK(x)− ϕ ◦ pK′(x)|dx+
∫
K∆K′

|ϕ(x)|dx.

By the Lipschitz condition, |ϕ ◦ pK(x)− ϕ ◦ pK′(x)| 6 |pK(x)− p′K(x)|,
thus giving the desired inequality.

The new term appearing in this proposition involves the volume of the
symmetric difference Kr∆K ′r. In order to get a result similar to the pro-
jection stability theorem but for the map K 7→ µK,Kr , we need to study
how fast this symmetric difference vanishes as K ′ converges to K. It is not
hard to see that if dH(K,K ′) is smaller than ε, then Kr∆K ′r is contained
in Kr+ε \ Kr−ε. Assuming that dH(K,K ′) < ε, using the coarea formula
(see [15]), we can bound the volume of this annulus around K as follows:

Hd(Kr∆K ′r) 6
∫ r+ε

r−ε
Hd−1(∂Ks)ds.

In the next paragraph we give a bound on the area of the boundary of the
offset Kr which we will then use to obtain a stability result for boundary
measures µK,Kr and curvature measures.

Area of offset boundaries. The next proposition gives a bound for the
measure of the r-level set ∂Kr of a compact set K ⊆ Rd depending only on
its covering number N (K, r). The covering number N (K, r) is defined as
the minimal number of closed balls of radius r needed to cover K and is a
way to measure the complexity of K – for instance, if K can be embedded in
Rd, then N (K, r) = O(r−d). Precisely, we prove the following proposition —
denoting by ωd−1(r) the volume of the (d− 1)-dimensional sphere of radius
r in Rd:
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Proposition 4.2. If K is a compact set in Rd, for every positive r, ∂Kr is
rectifiable and

Hd−1(∂Kr) 6 N (∂K, r)× ωd−1(2r).

We first prove proposition 4.2 in the special case of r-flowers. A r-flower
F is the boundary of the r-offset of a compact set contained in a ball B(x, r),
i.e. F = ∂Kr where K ⊆ B(x, r). The difference with the general case is
that if K ⊆ B(x, r), then Kr is star-shaped with respect to x (this will be
established in the proof of Lemma 4.3). Thus we can define a ray-shooting
map sK : Sd−1 → ∂Kr which sends any v ∈ Sd−1 to the intersection of the
ray emanating from x with direction v with ∂Kr.

Lemma 4.3. If K is a compact set contained in a ball B(x, r), the ray-
shooting map sK defined above is 2r-Lipschitz, so that Hd−1(∂Kr) 6 ωd−1(2r).

Proof. Since ∂Kr = sK(B(0, 1)), assuming that sK is 2r-Lipschitz, we will
indeed have: Hd−1(Kr) 6 (2r)d−1Hd−1(B(0, 1)) = ωd−1(2r). Let us now
compute the Lipschitz constant of the ray-shooting map sK .

If we let tK(v) be the distance between x and sK(v), we have tK(v) =
supe∈K te(v). Since tK is the supremum of all the te, in order to prove
that sK is 2r-Lipschitz, we only need to prove that each se is 2r-Lipschitz.
Without loss of generality, we will suppose that e is at the origin, x ∈ B(0, r)
and let s = se. Solving the equation ‖x+ t(v)v‖ = r with t > 0 gives

t(v) =
√
〈x|v〉2 + r2 − ‖x‖2 − 〈x|v〉.

This gives the following expression for the derivative of s(v) = x+ t(v)v,

dvs(w) = ‖s(v)− x‖w + dvt(w)v

= 〈s(v)− x|v〉w +
(〈x|v〉〈x|w〉
〈s(v)|v〉 − 〈x|w〉

)
v

= 〈s(v)− x|v〉〈s(v)|v〉w − 〈x|w〉v
〈s(v)|v〉 .

If w is orthogonal to x, then ‖dvs(w)‖ 6 ‖s(v)− x‖ ‖w‖ 6 2r ‖w‖ and
we are done. We now suppose that w is contained in the plane spanned by
x and v. Since w is tangent to the sphere at v, it is also orthogonal to v.
Hence, 〈s(v)− x|w〉 = 0, and 〈x|w〉 = 〈s(v)|w〉.

dvs(w) = ‖s(v)− x‖2 〈s(v)|v〉w − 〈s(v)|w〉v
〈s(v)|s(v)− x〉 .
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If we suppose that both v and w are unit vectors, 〈s(v)|v〉w−〈s(v)|w〉v is the
rotation of s(v) by an angle of π/4. By linearity we get ‖〈s(v)|v〉w − 〈s(v)|w〉v‖ =
‖w‖ ‖s(v)‖ (we still have ‖v‖ = 1). Now let us remark that

〈s(v)|s(v)− x〉 =
1
2

(‖x− s(v)‖2 + ‖s(v)‖2 − ‖x‖2) >
1
2
‖x− s(v)‖2 .

Using this we deduce:

‖dvs(w)‖ 6 ‖s(v)− x‖2 ‖w‖ ‖s(v)‖
1
2 ‖x− s(v)‖2 = 2 ‖s(v)‖ ‖w‖ 6 2r ‖w‖ .

We have just proved that for any w tangent to v, ‖dvs(w)‖ 6 2r ‖w‖, from
which we can conclude that s is 2r-Lipschitz.

Proof of proposition 4.2. By definition of the covering number, there exist a
finite family of points x1, . . . , xn, with n = N (K, r), such that union of the
open balls B(xi) covers ∂K. If one denotes by Ki the intersection of ∂K
with B(xi, r), the boundary ∂Kr is contained in the union ∪i∂Kr

i . Hence
its Hausdorff measure does not exceed the sum

∑
iHd−1(∂Kr

i ). Since for
each i, ∂Kr

i is a flower, one concludes by applying the preceding lemma.

From the discussion above we easily get:

Corollary 4.4. For any compact sets K,K ′ ⊆ Rd, with dH(K,K ′) 6 r/2,

Hd(Kr∆K ′r) 6 2N (K, r/2)ωd−1(3r)× dH(K,K ′).

Stability of approximate curvature measures. Combining the results
of Proposition 4.1, Corollary 4.4 and the Projection Stability Theorem, one
obtains the following stability result for boundary measures µK,Kr :

Theorem 4.5. If K and K ′ are two compact sets of Rd,

dbL(µK,Kr , µK′,K′r) 6 C3(d)N (K, r/2)rd[r + diam(K)]

√
dH(K,K ′)

r

provided that dH(K,K ′) 6 min(diamK, r/2, r2/ diamK).

To define the approximate curvature measures, let us fix a sequence (ri)
of d + 1 distinct numbers 0 < r0 < ... < rd. For any compact set K and
Borel subset B ⊂ K, we let

[
Φ(r)
K,i(B)

]
i

be the solutions of the linear system

∀i s.t 0 6 i 6 d,

d∑
j=0

ωd−jΦ
(r)
K,j(B)rd−ji = µK,Kri (B).

19



We call Φ(r)
K,j the (r)-approximate curvature measure. Since this is a linear

system, the functions Φ(r)
K,i also are additive. Hence the (r)-approximate

curvature measure Φ(r)
K,i defines a signed measure on Rd. We also note that

if K has a reach greater than rd, then the measures Φ(r)
K,i coincide with

Federer’s curvature measures of K, as introduced in section 2. Thanks to
these remarks and to Theorem 4.5, we have:

Corollary 4.6. For each compact set K whose reach is greater than rd,
there exist a constant C4(K, (r), d) depending on K, (r) and d such that for
any K ′ ⊆ Rd close enough to K,

dbL

(
Φ(r)
K′,i,Φ

i
K

)
6 C4(K, (r), d)dH(K,K ′)1/2.

This corollary gives a way to approximate the curvature measures of
a compact set K with positive reach from the (r)-approximate curvature
measures of any point cloud close to K.

5 Computing boundary measures

If C = {pi; 1 6 i 6 n} is a point cloud, that is a finite set of points of Rd,
then µC,Cr is a sum of weighted Dirac measures: letting VorC(pi) denote
the Voronoi cell of pi, we have:

µC,Cr =
n∑
i=1

Hd(VorC(pi) ∩ Cr)δpi .

Hence, computing boundary measures amounts to find the volume of in-
tersections of Voronoi cells with balls. This method is practical in dimension
3 but in higher dimensions it becomes prohibitive due to the exponential cost
of Voronoi diagrams computations. We instead compute approximations of
boundary measures using a Monte-Carlo method. Let us first recall some
standard facts about these.

Approximation by empirical measures. If µ is a probability measure
on Rd, one can define another measure as follows: let X1, . . . , XN be a family
of independent random vectors in Rd whose law is µ, and let µN be the sum
of Dirac 1

N

∑
i δXi . Convergence results of the empirical measure µN to µ are

known as uniform law of large numbers. Using standard arguments based
on Hoeffding’s inequality, covering numbers of spaces of Lipschitz functions
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and the union bound, it can be shown [7] that if µ supported in K ⊆ Rd,
then the following estimate on the bounded-Lipschitz distance between the
empirical and the real measure holds:

P [dbL (µN , µ) > ε] 6 2 exp
(
ln(16/ε)N (K, ε/16)−Nε2/2

)
.

In particular, if µ is supported on a point cloud C, with #C = n,
then N (C, ε/16) 6 n. This shows that computing an ε-approximation of
the measure µ with high probability (e.g. 99%) can always be done with
N = O(n ln(1/ε)/ε2). However, if C is sampled near a k-dimensional object,
then for ε in an appropriate range we have N (C, ε/16) 6 const ε−k, in which
case N is of the order of − ln(ε)εk+2.

Monte-Carlo approximation of boundary measures. Let C = {p1, . . . , pn}
be a point cloud. Applying the ideas of the previous paragraph to the prob-
ability measure βC,Cr = µC,Cr

Hd(Cr)
, we get the approximation algorithm 5.1.

Algorithm 5.1 Monte-Carlo algorithm to approximate µC,Cr

Input: a point cloud C, a scalar r, a number N
Output: an approximation of µC,Cr in the form 1

N

∑
n(pi)δpi

while k 6 N do
[I.] Choose a random point X with probability distribution

1
Hd(Cr)

Hd∣∣
Cr

[II.] Finds its closest point pi in the cloud C, add 1 to n(pi)
end while
[III.] Multiply each n(pi) by Hd(Cr).

To simulate the uniform measure on Cr in step I one cannot simply
generate points in a bounding box of Cr, keeping only those that are ac-
tually in Cr since the probability of finding a point in Cr might decrease
exponentially with the ambient dimension.

Luckily there is a simple algorithm to generate points according to this
law which relies on picking a random point xi in the cloud C and then a
point X in B(xi, r) — taking into account the overlap of the balls B(x, r)
where x ∈ C (algorithm 5.2). Instead of completely rejecting a point if it
lies in k balls with probability 1/k, one can instead modify the algorithm
5.1 to attribute a weight 1/k to the Dirac mass added at this point. Step
III. requires an estimate of Hd(Cr). Using the same empirical measure
convergence argument, one can prove that if TL is the total number of

21



Algorithm 5.2 Simulating the uniform measure in Cr

Input: a point cloud C = {pi}, a scalar r
Output: a random point in Cr whose law is Hd∣∣

Cr

repeat
Pick a random point pi in the point cloud C
Pick a random point X in the ball B(pi, r)
Count the number k of points pj ∈ C at distance at most r from X
Pick a random integer d between 1 and k

until d = 1
return X.

times the loop of algorithm 5.2 was run, and TN is the total number of
points generated, then TN/TL× nHd(B(0, r)) converges to Hd(Cr).

In figure 5.4, we show the result of this computation for a point-cloud
approximation of a mechanical part. Each point xi of the point cloud C is
represented by a sphere whose radius is proportional to the convolved value∑

j χ(xi − xj)µC,Cr({xj}), where χ is a tent function of appropriate radius.
As expected, the relevant features of the shape are visually highlighted.

Figure 5.4: Boundary measure for a sampled mechanical part.

6 Discussion

In this article, we introduced the notion of boundary measure. We showed
how to compute them efficiently for point clouds using a simple Monte-Carlo
algorithm. More importantly, we proved that they depend continuously on
the compact set. That is, the boundary measure of a point-cloud approxi-
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mation of a compact set K retains the geometric information contained in
the boundary measure of K, which is, as we know, very rich. We also obtain
the first quantitative stability result for Federer’s curvature measures, which
shows their usefulness for geometric inference. However several questions are
still to be investigated.

On the algorithmic side, finding approximate nearest neighbors is usually
much cheaper than exact nearest neighbors. It is thus tempting to replace
nearest neighbor projections by approximate nearest neighbors in the defi-
nition of boundary measures. From the perspective of inference, it would be
interesting to know whether the obtained measure still enjoys comparable
stability properties.

Also, we know that if K has reach greater than R, then µK,Kr is polyno-
mial on [0, R]. Because of the stability property proved in this article, if C is
a point cloud approximating K, then µC,Cr is almost polynomial on [0, R].
But is the converse also true? If so, our approach would provide a test for
knowing whether a point cloud is close to a compact of positive reach.

Finally, the boundary measures as defined here are sensitive to outliers:
a single outlier may get a significant fraction of the mass of the bound-
ary measure. While this may be seen as an interesting feature for outlier
detection, it would be useful to modify the general definition of boundary
measures so as to make it also robust to this kind of noise.
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