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2 OPTIMAL TRANSPORT

Why study optimal transport ? The main motivation studying optimal trans-
port in statistics is the notion of Wasserstein distance between probability
measures on a compact metric space X:

• The Wasserstein distances Wp represent faithfully the geometry of
the underlying space: x ∈ X 7→ δx ∈ P(X) is an isometry. This
means that unlike many notions of distances between functions/divergences
between probability measures (E.g relative entropy),

• Application: inverse problems, Wasserstein GANs
• Application: statistics over the space of probability measures, e.g.
geodesics barycenters, k-means, PCA...

• Application: PDE / particle systems

References. Introduction to optimal transport, with applications to PDE
and/or calculus of variations can be found in books by Villani [42] and San-
tambrogio [34]. Villani's second book [43] concentrates on the application of
optimal transport to geometric questions (e.g. synthetic de�nition of Ricci
curvature), but its �rst chapters might be useful. We also mention Gigli,
Ambrosio and Savaré [3] for the study of gradient �ows with respect to the
Monge-Kantorovich/Wasserstein metric.

Notation. In the following, we assume that X is a compact metric space, and
we denote C0(X) the space of continuous functions over X endowed with the
norm of uniform convergence ∥φ∥∞ = supx∈X |φ(x)|. We denote M(X) the
space of Radon measures on X, which we identify with the continuous dual
of C0(X). We will denote ⟨µ|φ⟩ =

∫
φdµ. We de�ne

M+(X) := {µ ∈ M(X) | ∀φ ∈ C0(X), φ ⩾ 0 =⇒ ⟨µ|φ⟩ ⩾ 0}
P(X) := {µ ∈ M+(X) | ⟨µ|1⟩ = 1}

The support of a measure µ is denoted spt(µ).
The dual space is endowed with the total variation norm

∥µn∥TV = sup
φ∈C0(X),∥φ∥∞⩽1

⟨µ|φ⟩.

However, the topology that we will consider by default on M0(X) is the
weak∗ topology. We recall for instance that a sequence (µn)n⩾0 of measures
converges weak∗ to µ if and only if

∀φ, lim
n→+∞

⟨µn|φ⟩ = ⟨µ|φ⟩.

We note that thanks to the Banach-Alaoglu theorem, any bounded sequence
(µn)n∈N in M(X) admits a weak∗ converging subsequence. This applies in
particular to any sequence in P(X): the space of probability measures is
weak∗ sequentially compact (and even compact).

1. The problems of Monge and Kantorovich

1.1. Monge's problem.

De�nition 1 (Push-forward and transport map). LetX,Y be compact met-
ric spaces, µ ∈ M(X) and let T : X → Y be a measurable map. The
push-forward of µ by T is the measure T#µ on Y de�ned by

∀B ⊆ Y, T#µ(B) = µ(T−1(B)).
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or equivalently if the following change-of-variable formula holds for all test
function φ ∈ C0(Y ): ∫

Y
φ(y)dν(y) =

∫
X
φ(T (x))dµ(x).

A measurable map T : X → Y such that T#µ = ν is also called a transport
map between µ and ν.

Example 1. If Y = {y1, . . . , yn}, then T#µ =
∑

1⩽i⩽n µ(T
−1({yi}))δyi .

De�nition 2 (Monge's problem). Consider two metric spaces X,Y , two
probability measures µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y →
R ∪ {+∞}. Monge's problem is the following optimization problem

(MP) := inf

{∫
X
c(x, T (x))dµ(x) | T : X → Y and T#µ = ν

}
(1.1)

This problem exhibits several di�culties, one of which is that both the
constraint (T#µ = ν) and the functional are non-convex.

Example 2. There might exist no transport map between µ and ν. For
instance, consider µ = δx for some x ∈ X. Then, T#µ(B) = µ(T−1(B)) =
δT (x). In particular, if ν is not a Dirac mass, then there exists no transport
map between µ and ν.

1.2. Kantorovich's problem.

De�nition 3 (Transport plan). Let X,Y be two metric spaces and µ ∈
M+(X) and ν ∈ M+(Y ) be two non-negative measures. A transport plan
between µ and ν is a non-negative measure γ on the product space X × Y
whose marginals are µ and ν. The set of transport plans is denoted

Γ(µ, ν) = {γ ∈ M+(X × Y ) | ΠX#γ = µ, ΠY#γ = ν} ,
where ΠX : X × Y → X and ΠY : X × Y → Y are the projection maps.
Note that Γ(µ, ν) is a convex set, and that it is non-empty if and only if µ
and ν have the same total mass, i.e. µ(X) = ν(Y ).

De�nition 4 (Kantorovich's problem). Given two metric spaces X,Y , two
non-negative measures µ ∈ P(X), ν ∈ P(Y ) and a continuous cost function
c ∈ C0(X×Y ), Kantorovich's problem is the following optimization problem

(KP) := inf {⟨c|γ⟩ | γ ∈ Γ(µ, ν)} (1.2)

We will denote T c the associated transport cost

T c : M+(X)×M+(Y ) → R ∪ {+∞}
(µ, ν) 7→ inf{⟨c|γ⟩ | γ ∈ Γ(µ, ν)}.

(1.3)

Note that by convention, the in�mum over the empty set is +∞, so that
T c(µ, ν) = +∞ if µ(X) ̸= ν(Y ).

Remark 1. The in�mum in Kantorovich's problem is less than the in�mum
in Monge's problem. Indeed, consider a transport map satisfying T#µ = ν
and the associated transport plan γT = (id, T )#µ. Then, by the change-of-
variable formula one has

⟨c|γT ⟩ ⩽
∫
X×Y

c(x, y)d(id, T )#µ(x, y) =

∫
X
c(x, T (x))dµ,
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thus proving the claim.

Example 3 (Finite support). Assume thatX = Y = {1, . . . , N} and that µ, ν
are the uniform probability measures over X and Y . Then, Monge's problem
can be rewritten as a minimization problem over the set of bijections between
the two sets X and Y :

min

 1

N

∑
1⩽i⩽N

c(i, σ(i)) | σ ∈ SN

 .

In Kantorovich's relaxation, the set of transport plans Γ(µ, ν) agrees with
the set of bi-stochastic matrices :

γ ∈ Γ(µ, ν) ⇐⇒ γ ⩾ 0,
∑
i

γ(i, j) = 1/N =
∑
j

γ(i, j).

By Birkho�'s theorem, any extremal bi-stochastic matrix is induced by a
permutation. This shows that, in this case, the solution to Monge's and
Kantorovich's problems agree.

Theorem 1 (Existence of solutions to (KP)). Let X,Y be compact met-
ric spaces and let c ∈ C0(X × Y ). Then for any measures (µ, ν) ∈
M+(X)×M+(Y ) with equal total mass, Kantorovich's problem (KP) admits
a minimizer. Moreover, the transport cost T c is a convex and weak∗ lower
semicontinuous functional on M+(X)×M+(Y ).

Proposition 2. Let X,Y be compact metric spaces and let (µn)n∈N and
(νn)n∈N be sequences of non-negative measures on X and Y with same total
mass. Assume that these sequence weak∗ converge to µ ∈ M+(X) and ν ∈
M+(Y ) respectively. Then, any sequence of transport plans γn ∈ Γ(µn, νn)
admits a subsequence converging to some γ ∈ Γ(µ, ν).

In particular, the previous proposition implies that Γ(µ, ν) is compact.

Proof. Since µn ⩾ 0, one has ∥µn∥TV = ⟨µn|1⟩, which converges to ∥µ∥TV
by weak∗ convergence. Thus the sequence (µn) is bounded. Since

∥γn∥TV = ⟨γn|1⟩ = ⟨Π#γn |1⟩ = ⟨µn|1⟩,

the sequence (γn)n∈N is also bounded. By Banach-Alaoglu's theorem, it
admits a weak∗ converging subsequence. Relabeling if necessary, we therefore
assume that γn converges weak∗ to some γ ∈ M(X × Y ). Then,

∀φ ∈ C0(X × Y ) s.t. φ ⩾ 0, ⟨γ|φ⟩ = lim
n→+∞

⟨γn|φ⟩ ⩾ 0

so that γ is a non-negative measures. Given φ ∈ C0(X) and φ̂(x, y) := φ(x),
using ΠX#γn = µn we get ⟨φ|µn⟩ = ⟨φ|ΠX#γn⟩ = ⟨φ̂|γn⟩. Taking the limit
as n→ +∞, we deduce that ⟨φ|µ⟩ = ⟨φ̂|γ⟩ for all φ, implying that ΠX#γ =
µ. Similarly, we prove that ΠY#γ = ν, proving that γ ∈ Γ(µ, ν). □

Proof of theorem 1. We �rst note that the function γ 7→ ⟨c|γ⟩ is linear and
continuous on M(X × Y ). Second, we note that if µ(X) = ν(Y ), the set
Γ(µ, ν) is non-empty as it contains a suitably rescaled product of µ and ν.
The previous lemma shows that the set Γ(µ, ν) is weak∗ compact, so that
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⟨c|γ⟩ attains its minimum on this set. This shows existence of at least one
solution to (KP).

To prove that T c is lower semicontinous, we consider converging sequences
(µn), (νn) in M+(X) and M+(Y ) respectively. with weak∗ limits µ and ν.
Without loss of generality, we assume that µn and νn have the same total
mass (if not, T c(µn, νn) = +∞). For each n we consider γn ∈ Γ(µn, νn) the
optimal transport plan. Using the previous proposition, we assume taking a
subsequence if necessary that γn converges to some γ ∈ Γ(µ, ν). Then,

T c(µ, ν) ⩽ ⟨c|γ⟩ = lim
n→+∞

⟨c|γn⟩ = lim
n→+∞

T c(µn, νn).

□

2. One-dimensional optimal transport

De�nition 5 (Monotone set). A subset S of R× R is called monotone if

∀(x, y), (x′, y′) ∈ S, (x′ − x) · (y′ − y) ⩾ 0.

De�nition 6 (Submodular cost). A cost function c : R × R → R is called
strictly submodular if for every x0 < x1, the function y 7→ c(x1, y)− c(x0, y)
is decreasing.

Theorem 3. Let µ, ν be probability measures supported in X = Y = [a, b] ⊆
R, and let c be a continuous and strictly submodular cost on X × Y . Then,
there exists a unique optimal transport plan γ ∈ Γ(µ, ν), which is also the
unique transport plan with monotone support.

Proof. Step 1. We �rst establish that any optimal transport plan between
µ and ν must be monotone. Consider a transport plan γ ∈ Γ(µ, ν) and
consider (x0, y0) and (x1, y1) in spt(γ). Since we want to prove that (x0 −
x1)(y0 − y1) ⩽ 0, we may assume that x1 ̸= x0 and y1 ̸= y0. By continuity
of the cost, for any δ > 0 there exists r > 0 such that:

B((x0, y0), r) ∩ B((x1, y1), r) ̸= ∅
∀a, b ∈ {x1, x0, y1, y0},∀(x, y) ∈ B((a, b), r), |c(x, y)− c(a, b)| ⩽ δ

Since (x0, y0) and (x1, y1) both belong to the support of γ, there must exist
non-negative measures γ0 ⩽ γ and γ1 ⩽ γ with equal positive mass ε and
such that spt(γi) ⊆ B((xi, yi), r). Consider the marginals µi = πX#γi and
νi = πY#γi, and take any coupling σ0 (resp. σ1) between µ0 and ν1 (resp.
µ1 and ν0). Then, one can check that the measure

σ = γ − γ0 − γ1 + σ0 + σ1

is a transport plan between µ and ν (the non-negativity comes from γi ⩽ γ
and spt(γ1) ∩ spt(γ0) = ∅). Using the optimality of γ one gets

0 ⩽ F (σ)− F (γ) = F (σ0)− F (γ0) + F (σ1)− F (γ1)

=

∫
B(x0,r)×B(y1,r)

cdσ0 +

∫
B(x1,r)×B(y0,r)

cdσ1

−
∫
B(x0,r)×B(y0,r)

cdγ0 −
∫
B(x1,r)×B(y1,r)

cdγ1

⩽ ε · (c(x0, y1) + c(x1, y0)− c(x0, y0)− c(x1, y1) + 4δ)
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Since this holds for all δ > 0 small enough, we deduce that

c(x0, y0) + c(x1, y1) ⩽ c(x0, y1) + c(x1, y0).

Assume without loss of generality that x0 < x1. Then,

c(x1, y1)− c(x0, y1) ⩽ c(x1, y0)− c(x1, y0),

thus implying by submodularity (the function y 7→ c(x1, y1) − c(x0, y1) is
decreasing) that y0 ⩽ y1.
Step 2. We show that there exists at most one monotone transport plan

between µ and ν. Recall that a probability measure γ on R2 is uniquely
de�ned from the values γ((−∞, a]× (−∞, b]) for any a, b ∈ R. This follows
from the fact that such sets generate the Borel σ-algebra. Consider A =
(−∞, a] × (b,+∞) and B = (a,+∞) × (−∞, b]. Then, by monotonicity of
spt(γ) one cannot have γ(A) > 0 and γ(B) > 0 at the same time. Hence,

γ((−∞, a]× (−∞, b]) = min(γ(((−∞, a]× (−∞, b]) ∪A),
γ(((−∞, a]× (−∞, b]) ∪B))

= min(µ((−∞, a]), ν((−∞, b])).

This shows that γ((−∞, a]× ((−∞, b]) is uniquely de�ned from µ, ν, so that
γ is unique. □

2.1. Quantile function and one-dimensional Wasserstein spaces.

De�nition 7 (Cdf and quantile function). Let µ be a probability measure
on R. The cumulative distribution function Fµ : R → [0, 1] and the inverse
cumulative distribution function Tµ : [0, 1] → R are de�ned by:

Fµ(x) = µ((−∞, x]) Tµ(m) = inf {x ∈ R | Fµ(x) ⩾ m} .
The function Tµ will also be called the quantile function.

In the following, we assume that X is a segment of R.

De�nition 8 (Wasserstein distance). TheWasserstein distance of exponent
p ⩾ 1 between two probability measures µ, ν ∈ P(X) is de�ned by

Wp
p(µ, ν) = min

γ∈Γ(µ,ν)

∫
∥x− y∥p dγ(x, y).

Proposition 4 (Quantile functions and Wasserstein distance). Let µ, ν be
two probability measure on a segment X ⊆ R. Then,

(i) Tµ is a transport map between the Lebesgue measure λ[0,1] and µ
(ii) γµ→ν = (Tµ, Tν)#λ[0,1] is the unique monotone transport plan between

µ and ν;
(iii) for all p ⩾ 1, Wp(µ, ν) = ∥Tµ − Tν∥Lp([0,1]).

Example 4 (Translation). If ν is obtained by translating ν by a constant
v ∈ R, then Tν = Tµ + v so that Wp(µ, ν) = ∥Tµ − Tν∥Lp([0,1]) = |v|.

Example 5 (Discrete measures). If µ = 1
N

∑N
i=1 δxi and the sequence (xi)1⩽i⩽N

is increasing, then the quantile function satis�es

Tµ|[ i−1
n
, i
n ]

= xi.
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In particular, if ν = 1
N

∑N
i=1 δyi , where the sequence y1⩽i⩽N is also increasing,

Wp(µ, ν)
p =

1

N

∑
i

∥xi − yi∥p .

Proof. (i) Let µ̂ = Tµ#λ[0,1]. Then,

Fµ̂(x) = µ̂((−∞, x])

= λ(T−1
µ (−∞, x])

= λ({m ∈ [0, 1], Tµ(m) ⩽ x}
= λ({m ∈ [0, 1], Fµ(x) ⩾ m})
= Fµ(x).

were we used the equivalence Tµ(m) ⩽ x i� Fµ(x) ⩾ m. This shows that
µ̂ = µ.
(ii) Denote γ := γµ→ν . We note �rst that ΠX#γ = ΠX ◦ (Tµ, Tν)#λ[0,1] = µ,
and similarly ΠY#γ = ν. Thus, γ is a transport plan between µ and ν.
In addition, γ is supported on the set S := {(Tµ(m), Tν(m)) | m ∈ [0, 1]}.
Given two couples (xi, yi) ∈ S, there exists mi ∈ [0, 1] such that xi = Tµ(mi)
and yi = Tν(mi). Without loss of generality, assume that m0 ⩽ m1. Then,
Tµ(m0) ⩽ Tµ(m1) and Tν(m0) ⩽ Tν(m1) so that

(x1 − x0)(y1 − y0) ⩾ 0,

implying that S is monotone.
(iii) Theorem 3 proves that a solution to the optimal transport problem is
given between µ and ν for the convex cost c(x, y) = ∥x− y∥p is given by the
monotone plan, i.e.

min
γ∈Γ(µ,ν)

∫
∥x− y∥p dγ(x, y) =

∫
∥x− y∥p dγµ→ν(x, y)

=

∫
∥x− y∥p d(Tµ, Tν)#λ[0,1](x, y)

=

∫ 1

0
∥Tµ(m)− Tν(m)∥p dm

= ∥Tµ − Tν∥pLp([0,1]) □

Proposition 5 (Properties of the 1D Wasserstein spaces). The following
properties hold for any segment X ⊆ R and any p ⩾ 1:

(i) Wp is a distance on P(X)
(ii) Wp metrizes weak∗ convergence on P(X), i.e. for any sequence (µn)

in P(X) and any µ ∈ P(X),

lim
n→+∞

Wp(µn, µ) = 0 ⇐⇒ ∀φ ∈ C0(X), lim
n→+∞

⟨µn|φ⟩ = ⟨µ|φ⟩.

(iii) the application µ 7→ Tµ mapping a probability measure to its inverse
cdf is an isometric embedding of (P(X),Wp(X)) into Lp([0, 1]).

Proof. (i) We note that Wp(µ, ν) = 0 implies that Tµ = Tν a.e., so that
µ = Tµ#λ[0,1] = Tν#λ[0,1] = nu. The symmetry is immediate, and the
triangle inequality for Wp follows from the triangle inequality in Lp([0, 1]).
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(ii) Assume �rst that Wp(µn, µ) = ∥Tµn − Tµ∥Lp([0,1]) converges to zero as
n→ +∞. Then, ∥Tµn − Tµ∥L1([0,1]) also converges to zero as n→ +∞. Let

f : X → R be L-Lipschitz. Then,

|⟨f |µn − µ⟩| =
∣∣∣∣∫ 1

0
f(Tµn(m))− f(Tµ(m))dm

∣∣∣∣
⩽ L

∫ 1

0
∥Tµn(m)− Tµ(m)∥dm

= LW1(µn, µ)
n→+∞−−−−−→ 0

Since continuous functions onX can be uniformly approximated by Lipschitz
functions, we get weak∗ convergence.

Conversely, assume that µn converges weakly to µ. The non-decreasing
map Tµ is continuous on [0, 1] \ Z, where Z is at most countable. It is
standard that for any x ̸∈ Z, Tµn(x) converges to Tµ(x) as n → +∞, i.e.
Tµn converges a.e. to Tµ. Since in addition Tµn is bounded, we deduce that
convergence holds in Lp([0, 1]) for any p ⩾ 1. □

De�nition 9 (Geodesic). Let (E, d) be a metric space. A constant speed
geodesic between two points x0, x1 ∈ E is a continuous curve x : [0, 1] → E
such that for every s, t ∈ [0, 1], d(xs, xt) = |s− t| d(x0, x1).

Proposition 6. Let X be a segment of R and let µ0, µ1 ∈ P(X). De�ne

µt := Tt#λ[0,1], where Tt = (1− t)Tµ0 + tTµ1

Then, the curve µt is a constant speed geodesic between µ0 and µ1 in the
space (P(X),Wp), for any exponent p ⩾ 1. In particular, this space is a
geodesic space, meaning that any µ0, µ1 ∈ Pp(X) can be joined by (at least
one) constant speed geodesic.

Proof. First note that if 0 ⩽ s ⩽ t ⩽ 1,

Wp(µ0, µ1) ⩽ Wp(µ0, µs) +Wp(µs, µt) +Wp(µt, µ1),

so that it su�ces to prove the inequality Wp(µs, µt) ⩽ |t− s|Wp(µ0, µ1) for
all 0 ⩽ s ⩽ t ⩽ 1 to get equality. The inequality is easily checked by taking
γst := (Ts, Tt)#λ[0,1] ∈ Γ(µs, µt), so that

Wp(µs, µt)
p ⩽

∫
∥Ts(m)− Tt(m)∥p dm

=

∫
∥(1− s)T0(m) + sT1(m)− ((1− t)T0(m) + tT1(m))∥p dm

=

∫
∥(t− s)(T0(m)− Tt(m))∥p dm = (t− s)pWp(µ, ν)

p □

Remark 2 (Barycenters). We can also consider barycenters in the Wasser-
stein, at least in the case p = 2 and on a segmentX. The weighted barycenter
of probability measures µ0, . . . , µk ∈ P(X) with weights α1, . . . , αk > 0 is
the unique minimizer of

min
µ∈P(X)

∑
1⩽i⩽k

αkW
2
2(µk, µ).
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The quantile function of the barycenter µ therefore solves the following min-
imization problem

Tµ ∈ argmin
T

∑
1⩽i⩽k

αk ∥Tµk − T∥2L2([0,1]) ,

so that Tµ is simply a weighted average of the Tµk :

Tµ =
1∑
k αk

∑
1⩽i⩽k

αkTµk .

The barycenter is �nally recovered thanks to the formula µ = Tµ#λ[0,1], i.e.

µ =

 1∑
k αk

∑
1⩽i⩽k

αkTµk


#

λ[0,1].

3. Kantorovich duality

3.1. Derivation of the dual problem. The primal Kantorovich problem
(KP) can be reformulated by introducing Lagrange multipliers for the con-
straints. Namely, we use that for any γ ∈ M+(X × Y ),

sup
φ∈C0(X)

−⟨φ⊗ 1|γ⟩+ ⟨φ|µ⟩ =

{
0 if ΠX#γ = µ

+∞ if not

sup
φ∈C0(X)

−⟨1⊗ ψ|γ⟩+ ⟨ψ|µ⟩ =

{
0 if ΠX#γ = µ

+∞ if not

to deduce that for any γ ∈ M+(X × Y ),

sup
φ∈C0(X),ψ∈C0(Y )

⟨φ|µ⟩+ ⟨ψ|ν⟩ − ⟨φ⊕ ψ|γ⟩ =

{
0 if γ ∈ Γ(µ, ν)

+∞ if not.

This leads to the following formulation of the Kantorovich problem

(KP) = inf
γ∈M+(X×Y )

sup
(φ,ψ)∈C0(X)×C0(Y )

⟨c− (φ⊕ ψ)|γ⟩+ ⟨φ|µ⟩ − ⟨ψ|ν⟩

Kantorovich dual problem is simply obtained by inverting the in�mum and
the supremum:

(KD) := sup
φ,ψ

inf
γ⩾0

⟨c− (φ⊕ ψ)|γ⟩+ ⟨φ|µ⟩ − ⟨ψ|ν⟩.

Note that we will often omit the assumptions that γ ∈ M(X × Y ) and φ,ψ
are continuous, when the context is clear. The dual problem can further be
simpli�ed by remarking that

inf
γ⩾0

⟨c− φ⊕ ψ|γ⟩ =

{
0 if φ⊕ ψ ⩽ c

−∞ if not.

De�nition 10 (Kantorovich's dual problem). Given µ ∈ P(X) and ν ∈
P(Y ) with X,Y compact metric spaces and c ∈ C0(X × Y ), we de�ne Kan-
torovich's dual problem by

(KD) = sup

{∫
X
φdµ+

∫
Y
ψdν | (φ,ψ) ∈ C0(X)× C0(Y ), φ⊕ ψ ⩽ c

}
(3.4)
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Proposition 7. Weak duality holds, i.e. (KP) ⩾ (KD).

Proof. Given (φ,ψ, γ) ∈ C0(X) × C0(Y ) × Γ(µ, ν) satisfying the constraint
φ⊕ ψ ⩽ c, one has

⟨φ|µ⟩+ ⟨ψ|ν⟩ = ⟨φ⊕ ψ|γ⟩ ⩽ ⟨c|γ⟩,

where we used γ ∈ Γ(µ, ν) to get the equality and φ ⊕ ψ ⩽ c to get the
inequality. As a conclusion,

(KD) = sup
φ⊕ψ⩽c

⟨φ|µ⟩ − ⟨ψ|ν⟩ ⩽ min
γ∈Γ(µ,ν)

⟨c|γ⟩ = (KP) □

Remark 3. As often, the Lagrange multipliers (or Kantorovich potentials)
φ,ψ have an economic interpretation as prices. For instance, imagine that µ
is the distribution of sand available at quarries, and ν describes the amount
of sand required by construction work. Then, (KP) can be interpreted as
�nding the cheapest way of transporting the sand from µ to ν for a construc-
tion company. Imagine that this company wants to externalize the transport,
by paying a loading coast φ(x) at a point x (in a quarry) and an unload-
ing coast ψ(y) at a point y (at a construction place). Then, the constraint
φ(x)+ψ(y) ⩽ c(x, y) translates the fact that the construction company would
not externalize if its cost is higher than the cost of transporting the sand
by itself. Then, Kantorovich's dual problem (KD) describes the problem of
a transporting company: maximizing its revenue

∫
φdµ +

∫
ψdν under the

constraint φ ⊕ ψ ⩽ c imposed by the construction company. The economic
interpretation of the strong duality (KP) = (KD) is that in this setting,
externalization has exactly the same cost as doing the transport by oneself.

The questions that we will address now are the following:

• When does strong duality ((KP) = (KD)) hold ?
• When is the supremum in Kantorovich's dual problem attained ?
• What does Kantorovich's duality imply about Monge's problem, sta-
bility of optimal transport maps/plans, numerics, etc ?

3.2. Strong duality. We prove strong duality using a strategy recently
proposed by Savaré and Sodini [35], which relies only the Fenchel-Moreau
theorem from convex analysis. In addition to the transport cost functional,

T c : M(X)×M(Y ) → R ∪ {+∞}

(µ, ν) 7→

{
inf{⟨c|γ⟩ | γ ∈ Γ(µ, ν)} if µ ⩾ 0, ν ⩾ 0, and µ(X) = ν(Y )

+∞ otherwise

(3.5)
we will consider the following, non-convex and very singular functional, which
encodes the cost of transport between Dirac masses with the same weight:

Fc : M(X)×M(Y ) → R ∪ {+∞}

(µ, ν) 7→

{
mc(x, y) if µ = mδx, ν = mδy and m ⩾ 0

+∞ otherwise

(3.6)

Theorem 8 (Savaré and Sodini). T c = F ∗∗
c
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Corollary 9 (Strong duality in Kantorovich's problem). (KP) = (KD).

The proof ot these results rely on the Fenchel-Moreau theorem from convex
analysis. To state this theorem, we need to de�ne the convex and convex
biconjugate of a function on a topological vector space.

De�nition 11 (Convex conjugate). Let E be a topological vector space.
The convex conjugate of a function F : E → R ∪ {+∞} is the function F ∗

on the dual space E∗ de�ned by

F ∗(x∗) = sup
x∈E

⟨x∗|x⟩ − F (x).

The biconjugate of F is then de�ned as F ∗∗ : E → R ∪ {+∞} by

F ∗∗(x) = sup
x∗∈E∗

⟨x∗|x⟩ − F ∗(x∗).

It is quite easy to see that F ∗ and F ∗∗ are convex and lower semicontin-
uous, as suprema of continuous a�ne functions. Fenchel-Moreau's theorem
show that F ∗∗ is in fact the lower semicontinuous convex envelope of F , i.e.
the largest lsc convex function that lies below F .

Theorem 10 (Fenchel-Moreau). Let E be a locally convex and separated
topological vector space and let F : E → R ∪ {+∞}. Then F ∗∗ is the lsc
convex envelope of F , i.e. the largest lsc convex function that lies below F .
In particular, F = F ∗∗ if and only if F is convex and lower semicontinuous.

Proof. Let G be the lsc convex envelope of F . We �rst prove that F ∗∗ ⩽ G.
Given any point x ∈ E, the de�nition of F ∗ as a supremum gives F ∗(x∗) ⩾
⟨x∗|x⟩ − F (x). Thus,

F ∗∗(x) = sup
x∗∈E∗

⟨x∗|x⟩ − F ∗(x∗) ⩽ sup
x∗∈E∗

⟨x∗|x⟩ − (⟨x∗|x⟩ − F (x)) = F (x).

This shows that the lsc convex function F ∗∗ lies below F , so that F ∗∗ lies
below the lsc convex envelope of F .

To prove that F ∗∗ ⩾ G, we use the following representation of G as the
maximum of continuous a�ne functions that lie below F :

G(x) = sup {⟨x∗|x⟩+ α | (x∗, α) ∈ X∗ × R s.t. ⟨x∗|·⟩+ α ⩽ F} .

We now choose some a�ne function de�ned by (x∗, α) ∈ E∗ × R and lying
below F , i.e. such that F ⩾ ⟨x∗|·⟩+ α. Then,

F ∗(x∗) ⩽ sup
x∈X

⟨x∗|x⟩ − F (x) ⩽ sup
x∈X

⟨x∗|x⟩ − (⟨x∗|x⟩+ α) = −α.

This implies that F ∗∗(x) ⩾ ⟨x∗|x⟩ − F ∗(x) ⩾ ⟨x∗|x⟩ + α. In other words,
F ∗∗ is larger than any a�ne function that lies below F , i.e. F ∗∗ ⩾ G. □

Proof of Theorem 8. We need to compute the convex conjugate and bicon-
jucate of the functional Fc. This functional is de�ned on the space M(X)×
M(Y ) endowed with the product of the weak∗-topologies, making it a locally
convex and separated topological vector space. By de�nition of the weak∗
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topology, M(X)∗ = C0(X), so that we may identify (M(X)×M(X))∗ with
C0(X)× C0(Y ). We have

F ∗
c (φ,ψ) = sup

µ,ν
⟨µ|φ⟩+ ⟨ν|ψ⟩ − F (µ, ν)

= sup
x,y∈X,m⩾0

m(⟨δx|φ⟩+ ⟨δy|ψ⟩ − c(x, y))

= sup
x,y∈X,m⩾0

m(φ(x) + ψ(y)− c(x, y))

=

{
0 if φ⊕ ψ ⩽ c

+∞ otherwise

Therefore, the biconjugate of Fc is given by

F ∗∗
c (µ, ν) = sup

φ,ψ
⟨µ|φ⟩+ ⟨ν|ψ⟩ − F ∗

c (φ,ψ)

= sup
φ⊕ψ⩽c

⟨µ|φ⟩+ ⟨ν|ψ⟩ = (KD).

Recall that F ∗∗
c is the largest lsc convex function that lie below Fc. Since T c is

lsc convex and also lies below Fc, we deduce that (KD) = F ∗∗
c ⩾ T c = (KP).

Since we already know (by weak duality) that (KP) ⩾ (KD), we deduce
strong duality ((KP) = (KD)) and F ∗∗

c = T c. □

3.3. Existence of solution for the dual problem. Kantorovich's dual
problem (KD) consists in maximizing a concave (actually linear) functional
under linear inequality constraints. It can also also easily be turned into
an unconstrained minimization problem. The idea is quite simple: given
a certain ψ ∈ C0(Y ), one wishes to select φ on X which is as large as
possible (to maximize the term ⟨φ|µ⟩ in (KD)) while satisfying the constraint
φ⊕ ψ ⩽ c. This constraint can be rewritten as

∀x ∈ X, φ(x) ⩽ min
y∈Y

c(x, y)− ψ(y).

The largest function φ satisfying it is φ(x) = miny∈Y c(x, y)− ψ(y). Thus,

(KP) = sup
φ⊕ψ⩽c

⟨φ|µ⟩+ ⟨ψ|ν⟩

= sup
ψ∈C0(Y )

∫
X

(
min
y∈Y

c(x, y)− ψ(y)

)
dµ(x) +

∫
ψ(y)dν(y).

This idea is at the basis of many algorithms to solve discrete instances of
optimal transport, but also useful in theory. It also suggests to introduce
the notion of c-transform.

De�nition 12 (c-Transform, c-Concavity). The c-transform (resp. c-transform)
of a function ψ : Y → R ∪ {+∞} (resp. φ : X → R ∪ {+∞}) is

ψc : x ∈ X 7→ min
y∈Y

c(x, y)− ψ(y) (3.7)

φc : y ∈ Y 7→ min
x∈X

c(x, y)− φ(x) (3.8)

A function φ on X is called c-concave if φ = ψc for some ψ ∈ C0(Y ).
Similarly, a function ψ on Y is called c-concave if ψ = φc for some φ ∈ C0(X).
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Thanks to this notion of c-transform, one can reformulate the dual problem
(KD) as an unconstrained maximization problem:

(KD) = sup
ψ∈C0(Y )

∫
X
ψcdµ+

∫
Y
ψdν. (3.9)

Theorem 11 (Existence of dual potentials). The dual Kantorovich problem
(KD) admits a maximizer. Moreover, for any x0 ∈ X there exists a max-
imizer of the form (φ,ψ), such that φ = ψc and ψ = φc, and satisfying
φ(x0) = 0.

The existence of maximizers follows from the fact that a c-concave/c-
convex function has the same modulus of continuity as c.

De�nition 13 (Modulus of continuity). A real-valued function f on a met-
ric space (Z, dZ) has modulus of continuity ω : R+ → R if ω satis�es
limt→0 ω(t) = 0 and if for every z, z′ ∈ Z, |f(z)− f(z′)| ⩽ ω(dZ(z, z

′)).

Lemma 12 (Properties of c-transforms). Let ω : R+ → R+ be a modulus of
continuity for c ∈ C0(X × Y ) for the distance

dX×Y ((x, y), (x
′, y′)) = dX(x, x

′) + dY (y, y
′).

Then for every φ ∈ C0(X) and every ψ ∈ C0(Y ),

• φc and ψc also admits ω as modulus of continuity.
• ψcc ⩾ ψ and ψccc = ψc.
• φcc ⩾ φ and φccc = φc.

Proof. (i) Let ψ ∈ C0(Y ) and let x be a point in X. By compactness, there
exists a point yx in Y realizing the minimum in the de�nition of ψc. Then,
for every x′ ∈ X,

ψc(x′) = min
y∈Y

c(x′, y)− ψ(y)

⩽ c(x′, yx)− ψ(yx) = ψc(x) + c(x′, yx)− c(x, yx)

⩽ ψc(x) + ω(dX(x, x
′)).

Exchanging the role of x and x′ we get |ψc(x′)− ψc(x)| ⩽ ω(dX(x, x
′)) as

desired. The proof that φc has the ω as modulus of continuity is similar.
(ii) By de�nition, of the c and c-transforms, one has

ψcc(y) = min
x∈X

(
c(x, y)−min

ỹ∈Y
c(x, ỹ)− ψ(ỹ)

)
.

Taking ỹ = y, one gets ψcc(y) ⩾ ψ(y). Again, by de�nition, we have

ψccc(x) = min
y∈Y

(
c(x, y)−min

x̃∈X

(
c(x̃, y)−min

ỹ∈Y
c(x̃, ỹ)− ψ(ỹ)

))
.

By taking x̃ = x , one gets ψccc(x) ⩾ ψc(x), while taking ỹ = y gives us
ψccc(x) ⩽ ψc(x). The claim (iii) is proven similarly. □

Proof of Theorem 11. Let (φn, ψn)n∈N be a maximizing sequence for (KD),
i.e. φn⊕ψn ⩽ c and limn→+∞⟨φn|µ⟩+ ⟨ψn|ν⟩ = (KD). De�ne φ̂n = ψcn and

ψ̂n = φ̂n
c. Then φ̂n ⊕ ψ̂n ⩽ c, φn ⩽ φ̂n and ψn ⩽ ψ̂n, which implies

⟨φn|µ⟩+ ⟨ψn|ν⟩ ⩽ ⟨φ̂n|µ⟩+ ⟨ψ̂n|ν⟩.
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Thus, the sequence (φ̂n, ψ̂n)n∈N is also a maximizing sequence for (KD). We
note at this point that it is possible to assume that φ̂n(x0) = 0 for all n,
where x0 is a given point in X. Indeed, if this is not the case, we may replace
the original sequence (φ̂n, ψ̂n)n∈N by (φ̂n − φ̂n(x0), ψ̂n + φ̂n(x0))n∈N, which
is also admissible and has the same dual value.

We now prove that the sequence (φ̂n, ψ̂n) admits a converging subse-

quence. By Lemma 12, the sequences (φ̂n)n and (ψ̂n)n are equicontinuous.
Since φ̂n(x0) = 0, we deduce from uniform continuity that the sequence
(φ̂n)n∈N is uniformly bounded. Then, using

ψ̂n(y) = φ̂cn(y) = max
x∈X

c(x, y)− φ̂n(x),

we deduce that ∥ψ̂n∥∞ ⩽ ∥c∥∞ + ∥φ̂n∥∞ so that (φ̂n)n∈N is also uniformly
bounded. By Arzelà-Ascoli's theorem, both sequences therefore admit con-
verging subsequences. The limit potentials are then maximizers for (KD)
because the functional which is maximized in (KD) is continuous. □

3.4. Stability of optimal transport plans.

Proposition 13 (Support of OT plans). Let (φ,ψ) ∈ C0(X) × C0(Y ) be
admissible for the problem (KD), i.e. φ ⊕ ψ ⩽ c, and let γ ∈ Γ(µ, ν) be a
transport plan. Then the two assertions are equivalent

• γ is an optimal transport plan and (φ,ψ) is a maximizer in (KD)
• spt(γ) ⊆ {(x, y) ∈ X × Y | φ(x)⊕ ψ(y) = c(x, y)}.

Proof. Using �rst the admissibility of (φ,ψ) and then γ ∈ Γ(µ, ν),

0 ⩽ ⟨c|γ⟩ − ⟨φ⊕ ψ|γ⟩ = ⟨c|γ⟩ − (⟨φ|µ⟩+ ⟨ψ|ν⟩
We see that the last term vanishes if and only if γ minimizes (KP) and (φ,ψ)
maximizes (KD) (and if strong duality, (KP) = (KD), holds). But this term
also vanishes if and only if the �rst inequality is an equality. Since φ⊕ψ ⩽ c,
this is equivalent to c− φ⊕ ψ = 0 γ-almost everywhere. □

Because of this proposition, one can think of the dual Kantorovich po-
tentials, the prices in the economic interpretation of OT, as an �optimality
certi�cate� for an optimal transport plan (i.e. a way to convince someone
that you actually found the optimum). This leads to the following stability
theorem for optimal transport maps.

Theorem 14 (Stability of OT plans). Let X,Y be compact metric spaces
and let c ∈ C0(X × Y ). Consider (µk)k∈N and (νk)k∈N in P(X) and P(Y )
converging weakly to µ and ν respectively.

• If γk ∈ Γ(µk, νk) is optimal then, up to subsequences, (γk) converges
weakly to an optimal transport plan γ ∈ Γ(µ, ν).

• Let (φk, ψk) be optimal Kantorovich potentials in the dual problem
between µk and νk, satisfying ψk = φck, φk = ψck and φk(x0) = 0 for
some x0 ∈ X. Then, up to subsequences, the sequence (φk, ψk) con-
verges uniformly to a maximizing pair (φ,ψ) for (KD) also satisfying
φ = ψc and ψ = φc.

We will use the following lemma about the convergence of the supports of
weak∗ converging measures.
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Lemma 15. If a sequence of non-negative measures (µn)n∈N weak∗-converges
to µ, then any point x in spt(µ) is the limit as n → +∞ of points xn in
spt(µn).

Proof of Theorem 14. As c-concave functions, φk and ψk have the same mod-
ulus of continuity as the cost function c (see Lemma 12), and they are uni-
formly bounded (using φk(x0) = 0). Using Arzelà-Ascoli theorem, we can
therefore assume that up to subsequences, (φk) (resp. (ψk)) converges to
some φ (resp ψ) uniformly. Then, one easily sees that φ⊕ψ ⩽ c so that (φ,ψ)
are admissible for the limit dual problem (KD). By Proposition 2, we can
assume, taking subsequences if necessary, that the sequence γk ∈ Γ(µk, νk)
converges to some γ ∈ Γ(µ, ν).

By Proposition 13, we see that γk is supported on the set

Sk = {(x, y) ∈ X × Y | φk(x) + ψk(y) = c(x, y)}.

Moreover, by Lemma 15, every pair (x, y) ∈ spt(γ) can be approximated by
a sequence of pairs (xk, yk) ∈ spt(γk) i.e. limk→∞(xk, yk) = (x, y). Since γk
is supported on Sk one has c(xk, yk) = φk(xk) + ψk(xk). This gives at the
limit c(x, y) = φ(x) + ψ(y). We have just shown that for every point pair
(x, y) in spt(γ), c(x, y) = φ(x) + ψ(y) where φ,ψ is admissible. Applying
Proposition 13 again, this shows that γ and (φ,ψ) are optimal for their
respective problems. □

4. Kantorovich's functional

4.1. Kantorovich's functional. As already mentioned in (3.9), the Kan-
torovich's dual problem (KD) can be expressed as an unconstrained maxi-
mization problem, involving the c-transform.

De�nition 14. The Kantorovitch functional is de�ned on C0(Y ) by

Kµ(ψ) =

∫
X
ψcdµ (4.10)

The Kantorovitch dual problem therefore amounts to maximizing the Kan-
torovitch functional plus a linear term:

(KD) = max
ψ∈C0(Y )

Kµ(ψ) + ⟨ψ|ν⟩.

It is quite easy to see that Kµ is concave, recalling the de�nition of the c-
transform as a minimum. If (φ,ψ) are maximizers in the Kantorovich's dual
problem (KD) between µ and ν, then ψ is a maximizer of Kµ + ⟨·|ν⟩.

This subsection is devoted to the computation of the superdi�erential of
Kantorovich's functional, in particular when the source measure µ is abso-
lutely continuous. This computation will be used to establish existence of
solutions to Monge's problem (following Brenier and Gangbo-McCann) and
to construct and study algorithms for (semi-)discretized optimal transport.

De�nition 15 (Response map). Given a potential ψ ∈ C0(Y ), we call re-

sponse map the set-valued map T̂ψ de�ned by

T̂ψ(x) = argmin
y∈Y

c(x, y)− ψ(y) = {y ∈ Y | c(x, y)− ψ(y) = ψc(x)}.
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Remark 4 (Construction of optimal transports). One can easily sees that the

graph of T̂ψ is

Graph(T̂ψ) = {(x, y) ∈ X × Y | ψc(x) + ψ(y) = c(x, y)}.
We note that if ψ is a maximizer of Kµ + ⟨·|ν⟩, then (ψc, ψ) is a maximizer
of (KD). By proposition Proposition 13, we see that the set of optimal
transport plans between µ and ν is equal to

{γ ∈ Γ(µ, ν) | spt(γ) ⊆ Graph(T̂ψ)}, (4.11)

making it a priori possible to recover a solution to the primal problem from
a maximizer of the Kµ + ⟨·|ν⟩.

Proposition 16. Let X,Y be compact metric spaces and let c ∈ C0(X×Y ).
Then, for all measure µ ∈ P(X) and any ψ ∈ C0(Y ), one has

∂+Kµ(ψ) =
{
−ν | ∃γ ∈ Γ(µ, ν) s.t. spt(γ) ⊆ Graph(T̂ψ)

}
.

Proof. Let ψ ∈ C0(Y ) and let ν ∈ (C0(Y ))∗ = M(Y ). Assume that −ν
belongs to ∂+Kµ(ψ). Then,

∀ψ′ ∈ C0(Y ),Kµ(ψ
′) ⩽ Kν(ψ)− ⟨ψ′ − ψ|ν⟩,

which is equivalent to

∀ψ′ ∈ C0(Y ), ⟨(ψ′)c|µ⟩+ ⟨ψ′|ν⟩ ⩽ ⟨ψc|µ⟩+ ⟨ψ|ν⟩,
so that (ψc, ψ) is a maximizer of the dual Kantorovich problem between µ
and ν. By strong Kantorovich duality (T c(µ, ν) = (KD)), this implies that
ν is non-negative, with same mass as µ, and that ⟨ψc|µ⟩+ ⟨ψ|ν⟩ = T c(µ, ν).
Let γ ∈ Γ(µ, ν) be an optimal transport plan between µ and ν for the cost
c. Then, by Proposition 13, we see that ψc ⊕ ψ = c on spt(γ) as desired.

Conversely, if a measure ν is such that there exists γ ∈ Γ(µ, ν) supported
on ψc ⊕ ψ = c, we get using (ψ′)c ⊕ ψ ⩽ c

Kµ(ψ
′) = ⟨(ψ′)c|µ⟩ = ⟨(ψ′)c ⊕ ψ′|γ⟩ − ⟨ψ′|ν⟩

⩽ ⟨c|γ⟩ − ⟨ψ|ν⟩
= ⟨ψc ⊕ ψ|γ⟩ − ⟨ψ′|ν⟩
= Kµ(ψ) + ⟨ψ′ − ψ| − ν⟩,

thus proving that −ν ∈ ∂+Kµ(ψ). □

4.2. Solution of Monge's problem. We now use Proposition 16 to prove
the existence of optimal transport maps when the source measure is abso-
lutely continuous on a compact subset of Rd and when the cost function
satis�es a twist condition. This result is due to Brenier [12] in the case of the

quadratic cost, that is c(x, y) = ∥x− y∥2 on Rd, and Gangbo-McCann in the
general case of twisted costs [20]. The question is to determine conditions

under which the response map T̂ψ is single-valued µ-almost everywhere.

De�nition 16 (Twisted cost). Let ΩX ,ΩY be open subsets of Rd, and let
c ∈ C1(ΩX × ΩY ). The cost function c satis�es the twist condition if

∀x0 ∈ ΩX , the map y ∈ ΩY 7→ ∇xc(x0, y) ∈ Rd is injective, (4.12)

where ∇xc(x0, y) is the gradient of x 7→ c(·, y) at x = x0.
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Proposition 17. Let ΩX ,ΩY be open subsets of Rd, let c ∈ C1(ΩX ×ΩY ) be
a cost satisfying the twist condition (4.12), and let X,Y be compact subsets
of ΩX and ΩY . Then, for Lebesgue-almost every x ∈ X, the response map
is a singleton:

T̂ψ(x) = argmin
y∈Y

c(x, y)− ψ(y) =: {Tψ(x)}.

In particular, if µ ∈ P(X) is absolutely continuous, then

∇Kµ(ψ) = −Tψ#µ.

Proof. De�ne φ = ψc, i.e. φ(x) = miny∈Y c(x, y) − ψ(y). If the minimum
in the de�nition of the response map is not unique, there exists two distinct
points y0, y1 in T̂ψ(x). For any i ∈ {0, 1}, we have

φ(x′) = min
y∈Y

c(x, y)− ψ(y) ⩽ c(x′, yi)− ψ(yi),

with equality at x′ = x. Since ∇c(x′, y1) ̸= ∇c(x′, y0) by injectivity of
y 7→ ∇c(x′, y), we see that φ is not di�erentiable at x.

Using c ∈ Lip(X × Y ), we get that φ is Lipschitz. Rademacher's theorem
then implies that φ is di�erentiable on a set B with full Lebesgue measure
in X. By the previous paragraph, we obtain that T̂ψ is a singleton at any
point of B. We conclude with the next lemma. □

Lemma 18. Let µ ∈ P(X) and let T̂ : X → Y be a set-valued map such that

T̂ (x) = {T (x)} for µ-almost every x. Then, there exists only one transport

plan γ ∈ Γ(µ, ν) satisfying spt(γ) ⊆ γ(Graph(T̂ )). This transport plan is
induced by the map T , i.e. γ = (id, T )#γ.

Proof. By de�nition of γT = (id, T )#γ one has γT (A×B) = µ(T−1(B)∩A)
for all Borel sets A ⊆ X and B ⊆ Y . On the other hand, consider the set
X ′ ⊆ X of points such that T̂ (x) = {T (x)}, so that X \ X ′ is µ-negligible
by assumption. Then,

γ(A×B) = γ((A ∩X ′)×B)

= γ({(x, y) | x ∈ A ∩X ′, and y ∈ B})
= γ({(x, y) | x ∈ A ∩X ′, y ∈ B and y = T (x)})
= γ({(x, y) | x ∈ A ∩X ′ ∩ T−1(B), y = T (x)}
= µ(A ∩X ′ ∩ T−1(B))

= µ(A ∩ T−1(X))

thus proving the claim. □

Theorem 19 (Gangbo-McCann [20]). Let ΩX ,ΩY be open subsets of Rd
and let c ∈ C1(ΩX × ΩY ) be a cost satisfying the twist condition (4.12).
Given compact subsets X and Y of ΩX and ΩY and two probability measures
(µ, ν) ∈ Pac(X)×P(Y ). Then, there exists ψ ∈ C0(Y ) such that the unique
optimal tranport map between µ and ν is induced by Tψ.

Proof of Theorem 19. Let ψ be a maximizer ofKµ+⟨ν|·⟩. By equation (4.11),
the set of optimal transport plans is {γ ∈ Γ(µ, ν) | spt(γ) ⊆ Graph(T̂ψ)}.
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Combining Proposition 17 and Lemma 18, we deduce that the unique element
of this set is γ = (id, Tψ)#µ. □

Here, we obtain Brenier's theorem as a corollary of Gangbo-McCann's
result � even though historically Brenier's theorem has been proven �rst.

Corollary 20 (Brenier [12]). Let X,Y be two compact subsets of Rd, let
c(x, y) = ∥x− y∥2 and let (µ, ν) ∈ Pac(X) × P(Y ). Then, there exists
φ : Rd → R convex such that ∇φ#µ = ν and the unique optimal transport
plan between µ and ν is induced by the map T = ∇φ.

Proof. We need to compute the response map associated to the maximizer
ψ of Kµ + ⟨·|ν⟩ for the quadratic cost:

Tψ(x) = argmin
y

∥x− y∥2 − ψ(y)

= argmin
y

∥y∥2 − 2⟨x|y⟩ − ψ(y)

= argmax
y

⟨x|y⟩ − 1

2
(∥y∥2 − ψ(y)).

Recalling the de�nition of the convex conjugate, one can see at once that

Tψ = ∇u where u =
(
1
2(∥·∥

2 − ψ)
)∗
. □

Remark 5 (Monge-Kantorovich quantiles). Given a �xed probability density
ρ on a compact domain of Rd, e.g. ρ ≡ 1 on [0, 1]d, and any compactly sup-
ported ν ∈ P(Rd), one can denote Tν the quadratic optimal transport map
between ρ and ν. In dimension d = 1, one recovers the quantile function. In
higher dimension, there is no canonical de�nition of a quantile function, but
Tν was proposed as a challenger under the name �Monge-Kantorovich quan-
tile� by Chernozhukov, Galichon, Hallin, Henry in [15]. Being the gradient
of a convex function, the Monge-Kantorovich quantile is monotone, i.e.

for a.e. x, y ∈ spt(ν), ⟨Tν(x)− Tν(y)|x− y⟩ ⩾ 0.

This notion can be used to de�ne multivariate notions of ranks and depth.

4.3. Semi-discrete optimal transport. Our working assumptions for the
remainder of this section are the following:

• ΩX ,ΩY are two open subsets of Rd. The cost function c belongs to
C1(ΩX × ΩY ) and satis�es the twist condition (4.12).

• the source measure ρ is absolutely continuous with respect to the
Lebesgue measure and is supported in a compact subset X of ΩX .

• the target space Y is �nite so that ν ∈ P(Y ) can be written under the
form ν =

∑
y∈Y νyδy. For simplicity, we assume that miny νy > 0.

Note that by an abuse of notation, we will often con�ate ρ with its density
with respect to the Lebesgue measure.

De�nition 17 (Laguerre tessellation). The Laguerre tessellation associated
to a set of prices ψ : Y → R is a decomposition of the space into Laguerre
cells de�ned by

Lagy(ψ) := {x ∈ ΩX | ∀z ∈ Y, c(x, y)− ψ(y) ⩽ c(x, z)− ψ(z)}. (4.13)
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Y
X

Figure 1. (Left) The domain X (with boundary in blue)
is endowed with a probability density pictured in grayscale
representing the density of population in a city. The set Y (in
red) represents the location of bakeries. Here, X,Y ⊆ R2 and
c(x, y) = |x − y|2 (Middle) The Voronoi tessellation induced
by the bakeries (Right) The Laguerre tessellation: the price
of bread the bakery near the center of X is higher than at
the other bakeries, e�ectively shrinking its Laguerre cell.

When ψ ≡ 0, the Laguerre cells are called Voronoi cells. The Voronoi cell of
the point y ∈ Y is denoted Vory(ψ).

Remark 6 (Response map). Let ψ ∈ RY . The response map Tψ is constant
on the interior of the Laguerre cells (and unde�ned on their boundary) by:

∀y ∈ Y, Tψ|Lagy = y.

In particular,

Tψ#ρ =
∑
y∈Y

Gy(ψ)δy, where Gy(ψ) = ρ(Lagy). (4.14)

Theorem 21 (Aurenhammer, Ho�man, Aronov). Under the assumptions
of this paragraph, the Kantorovich functional Kµ is C1-smooth on RY . Its
gradient is given by

∇Kρ(ψ) = −
∑
y∈Y

ρ(Lagy(ψ))δy (4.15)

In particular ψ ∈ RY maximizes Kρ + ⟨·|ν⟩, where ν ∈ P(Y ), if and only if

∀y ∈ Y, ρ(Lagy(ψ)) = ν({y}).

The only new statement in this theorem, compared to Proposition 17 is
that Kµ is C1. This is proven as point (iv) of the following lemma. In what
follows, we will denote R the oscillation of the cost function:

R := max
X×Y

c− min
X×Y

c, (4.16)

Lemma 22. Assume c is twisted (Def. 16) and ρ ∈ Pac(X). Then,

(i) ∀y ∈ Y , the map t 7→ Gy(ψ + t1y) is non-decreasing,
(ii) ∀y ̸= z ∈ Y , the map t 7→ Gy(ψ + t1z) is non-increasing,
(iii) if ψ ∈ RY is such that Gy0(ψ) > 0, then ψ(y0) ⩽ minY ψ +R,
(iv) for all y ∈ Y , the function Gy is continuous.
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Proof. The properties (i), (ii) are straightforward consequences of the de�ni-
tion of Laguerre cells. To prove (iii), take ψ such that Gy0(ψ) > 0, implying
in particular that the Laguerre cell Lagy0(ψ) is non-empty and contains a
point x ∈ X. Then, by de�nition of the cell one has for all y ∈ Y \ {y0},
c(x, y0) + ψ(y0) ⩽ c(x, y) + ψ(y), thus showing that ψ(y0) ⩽ minY ψ +R.

It remains to establish that each of the maps Gy is continuous. For this
purpose, we consider a sequence (ψn)n∈N converging to some ψ∞. We �rst
note that thanks to the Twist hypothesis, the set S de�ned by

S = {x ∈ X | ∃y ̸= z ∈ Y s.t. c(x, y)− ψ(y) = c(x, y)− ψ(z)}

⊆
⋃

y∈Y,z∈Y \{y}

{x ∈ X | c(x, y)− ψ(y) = c(x, y)− ψ(z)}.

is included in a �nite union of (d − 1)-dimensional submanifolds, which are
all Lebesgue-negligible. Thus, S is also ρ-negligible. De�ning χ = 1Lagy(ψ)
and χn = 1Lagy(ψn), we have

Gy(ψn) =

∫
χndρ, and G(ψ) =

∫
χdρ.

To prove that limn→+∞Gy(ψn) = Gy(ψ) it su�ces to establish that χn
converges to χ on X \ S, which is straightforward (because the inequali-
ties de�ning the set X \ S are strict), and to apply Lebesgue's dominated
convergence theorem. □

4.4. Oliker�Prussner's algorithm. Oliker-Prussner's algorithm for solv-
ing G(ψ) = ν is described in Algorithm 1, and bears strong resemblance
with Bertsekas' auction algorithm for the assignement problem [8, 9]. In
particular, the values of ψ are evolved in a monotonic way.

Algorithm 1 Oliker-Prussner algorithm

Input: A tolerence parameter δ > 0.
Initialization: Fix some y0 ∈ Y once for all. Set

ψ(0)(y) :=

{
0 if y = y0

R if not.

While: ∃y ∈ Y \ {y0} such that Gy(ψ
(k))) ⩽ νy − δ

N
Step 1: Compute

ty = min{t ⩾ 0 | Gy(ψ(k) + t1y) ⩾ νy}. (4.17)

Step 2: Set ψ(k+1) = ψ(k) + t1y.

Output: A vector ψ(k) that satis�es maxy
∥∥Gy(ψ(k))− ν({y})

∥∥
∞ ⩽ δ.

Theorem 23 (Oliker-Prussner). Assume that the cost c ∈ C2(ΩX × ΩY ) is
twisted (Def. 16) and that ρ ∈ Pac(X) ∩ L∞(X). Then,

• Oliker-Prussner's algorithm terminates in a �nite number of steps.
• Furthermore, at the �nal step k, one has

max
y∈Y

∣∣∣Gi(ψ(k))− νi

∣∣∣ ⩽ δ.
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Proof of Theorem 23.
Step 1 (Correctness) When Algorithm 1 terminates with ψ := ψ(k), one has
for any y ̸= y0, ρ(Lagy(ψ)) ⩽ νy. When it stops, it also means that one has

ρ(Lagy(ψ)) ⩾ νy − δ
N . Then, as desired, we get

ρ(Lagy0(ψ)) = 1−
∑
y ̸=y0

ρ(Lagy0(ψ)) ∈ [νy0 , νy0 + δ].

Step 2 (A priori bound on ψk) By construction one has ρ(Lagy(ψ
(k))) ⩽ νy,

which also imply that

ρ(Lagy0(ψ
(k))) = 1−

∑
y∈Y \{y0}

ρ(Lagy(ψ
(k))) ⩾ νy0 > 0.

By Proposition 22�(iii), we get 0 = ψk(y0) ⩽ minY ψ
(k) +R. Since the price

of y0 is never changed, ψ(k)(y0) = 0 and R ⩾ ψ(k) ⩾ −R.
Step 3 (Minimum decrease and termination) Since by Lemma 22�(iv) Gy
is continuous, it admits a continuity modulus on the compact set [−R,R]Y ,
i.e. a function ωy : R → R such that limt→0 ωy(t) = 0 and such that

∀ψ,ψ′ ∈ [−R,R]Y ,
∣∣Gy(ψ)−Gy(ψ

′)
∣∣ ⩽ ∥∥ψ − ψ′∥∥

∞ .

In the second step of the algorithm, when ψ(k) is updated one has Gy(ψ
(k)−

ty1y) ⩾ Gy(ψ
(k)) + δ

N . Using the uniform continuity of Gy, we have

δ

N
⩽
∣∣∣Gy(ψ(k) − ty1y)−Gy(ψ

(k))
∣∣∣ ⩽ ω(ty),

implying that there exists τ > 0 such that ty ⩾ τ . Since for any k, ψk(y) ∈
[−R,R], the number of times ky the price of a point y ∈ Y has been updated
is bounded: ky ⩽ 2R/τ . Thus, the algorithm terminates in �nite time. □

Remark 7 (Quadratic cost). For the cost c(x, y) = ∥x− y∥2, but also in more
general cases (see e.g. [27]), one can show that G is Lipschitz, with constant
larger than CN . In this case, the number of iterations is of the algorithm is
bounded by O(N3).

5. Entropy-regularized optimal transport

5.1. Primal problem. We start from the primal formulation of the optimal
transport problem, but instead of imposing the non-negativity constraints
γ ⩾ 0, we add a term to the transport cost, which promotes (minus) the
entropy of the transport plan and acts as a barrier for the non-negativity
constraint. The entropy of a measure µ ∈ M(X) on a compact metric space
X with respect to a probability measure ω on X is de�ned by

H(µ | ω) =

{∫
h(ρ)dω if dµ = ρdω

+∞ otherwise ,

where h(r) =


r(log r − 1) if r > 0,

0 if r = 0,

+∞ if r < 0.

(5.18)
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The regularized optimal transport problem is then de�ned as

(KPε) := inf
γ∈Γ(µ,ν)

⟨c|γ⟩+ εH(γ | µ⊗ ν). (5.19)

We will rely on the following dual representation of entropy.

Proposition 24 (Donsker-Varadhan). Let Z be a compact space, and let
ω ∈ M+(Z) be �nite. Then, for any measure µ ∈ M(Z),

H(µ | ω) = sup
f∈C0(Z)

⟨f |µ⟩ − ⟨ef |ω⟩. (5.20)

In particular, µ 7→ H(µ | ω) is convex and weak∗ lsc. In addition:

(i) the supremum in (5.20) is attained at f ∈ C0(Z) if and only if ef is
the density of µ with respect to ω.

(ii) the restriction of µ 7→ H(µ | ω) to the set of absolutely continuous
measures with respect to ω is strictly convex.

Remark 8 (Finite entropy implies non-negativity). We can prove thanks to
(5.20) that if µ ̸∈ M+(Z), then H(µ | ω) = +∞. Indeed, if ⟨µ|g⟩ < 0 for
some continuous function g ⩾ 0, one can check by taking f = −λg that

H(µ | γ) ⩾ λ ⟨µ| − g⟩︸ ︷︷ ︸
>0

−⟨ eλg︸︷︷︸
⩽1

|ω⟩ λ→+∞−−−−→ +∞.

This means that the regularized optimal transport problem can be equiva-
lently written by removing non-negativity constraint γ ⩾ 0:

(KPε) = inf
γ∈M(X×Y )|ΠX#γ=µ,ΠY#γ=ν

⟨c|γ⟩+ εH(γ | µ⊗ ν).

Proof. Note that for r > 0, h′(r) = ln(r) for r > 0. The convex conjugate of
h is therefore given by

h∗(s) = sup
r>0

rs− h(r) = er.

The Fenchel-Young inequality reads h∗(s) + h(r) ⩾ rs with equality if and
only if r = es. Assume that µ has density ρ with respect to ω. Then,

H(µ | ω) =
∫
h(ρ(x))dω(x)

=

∫
h∗∗(ρ(x))dω(x)

=

∫
sup
s
sρ(x)− h∗(ρ(x))dω(x)

In particular, for any bounded measurable function f we have

H(µ | ω) ⩾ ⟨f |ρω⟩ − ⟨ef |ω⟩ = ⟨f |µ⟩ − ⟨ef |ω⟩,
with equality if f = eρ a.e. □

Proposition 25. The regularized optimal transport problem admits a unique
solution. Moreover, the density of γ with respect to µ⊗ ν is positive a.e.

Remark 9 (No transport maps). In this entropy regularized setting, one
cannot expect to �nd an optimal transport map, since minimizers of the
regularized optimal transport problem are supported on the whole support
of the product µ⊗ ν.
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Remark 10 (Barrier). The main ingredient of the previous proposition is that
the slope of h : r 7→ r ln r is +∞ at r = 0, which forbids the density of γ
with respect to µ⊗ν to vanish on sets of positive measure. A stronger e�ect
could be obtained by using a penalization of the form εG(γ | µ⊗ ν) instead
of εH(γ | µ⊗ ν) where

G(µ | ω) =

{∫
g(ρ)dµ⊗ ν if dµ = ρdω

+∞ otherwise ,
(5.21)

where

g(r) =

{
− log r if r > 0,

+∞ if r ⩽ 0.

This barrier is stronger, as it forbis r = 0. When X and Y are �nite,
this choice is related to the interior point method for solving the optimal
transport problem, where one would solve subsequent problems of the form

min
γ∈Γ(µ,ν)

⟨c|γ⟩+ εkH(γ | µ⊗ ν)

for a sequence of parameters εk converging to zero.

Proof. Existence follows from lower semi-continuity of the functional and
compactness of Γ(µ, ν), while uniqueness follows from the strict convexity.

Let γ∗ be the optimizer of (KPε), and let ρ be the density of γ∗ with respect
to µ ⊗ ν. We will prove by contradiction that the set Z := {(x, y) | ρ = 0}
satis�es ρ(Z) = 0. For this purpose, we de�ne a new transport plan γt

between µ and ν by setting γt = (1− t)γ∗ + tµ⊗ ν. The density of γt with
respect to µ⊗ ν is ρt = (1− t)ρ+ t. We give an upper bound on the energy
of γt. We �rst observe that by convexity of h(r) = r(ln r − 1), we have∫
X×Y \Z

h(ρt)dµ⊗ ν ⩽ (1− t)

∫
X×Y \Z

h(ρt)dµ⊗ ν + t

∫
X×Y \Z

h(1)dµ⊗ ν

= (1− t)H(γt | µ⊗ ν)− t · µ⊗ ν(X × Y \ Z).

On the other hand, on Z we have ρt = t, so that∫
X×Y \Z

h(ρt)dµ⊗ ν = t(ln(t)− 1) · µ⊗ ν(Z).

Finally, we note that ⟨c|γt⟩ = ⟨c|γ∗⟩ + t(⟨µ ⊗ ν − γ∗|c⟩. Summing these
equalities and inequalities, we get

⟨c|γt⟩+ εH(γt | µ⊗ ν) ⩽ ⟨c|γ∗⟩+ εH(γ∗ | µ⊗ ν) + t(C + ln(t) · µ⊗ ν(Z)).

Taking t small enough, one get a contradiction on the optimality of γ∗, unless
the set Z has zero µ⊗ ν�measure. □

5.2. Dual problem. The dual problem is constructed, as before, by intro-
ducing Lagrange multipliers φ ∈ C0(X) and ψ ∈ C0(Y ) for the constraints
ΠX#γ = µ and ΠY#γ = ν, and also dualizing the entropy using the Donsker-
Varadhan formula. We have

(KPε) = inf
γ|ΠX#γ=µ and ΠX#γ

⟨c|γ⟩+ εH(γ | µ⊗ ν)

= inf
γ

sup
φ,ψ,f

⟨c− φ⊕ ψ|γ⟩+ ⟨φ|µ⟩+ ⟨ψ|ν⟩+ ε(⟨f |γ⟩ − ⟨ef |µ⊗ ν⟩)



24 OPTIMAL TRANSPORT

The dual problem is constructed by inverting the in�mum and the supremum:

(KDε) = sup
φ,ψ,f

inf
γ
⟨c− φ⊕ ψ + εf |γ⟩+ ⟨φ|µ⟩+ ⟨ψ|ν⟩ − ε⟨ef |µ⊗ ν⟩)

One notices that the in�mum is −∞ unless c−φ⊕ψ+εf = 0, i.e. f = φ⊕ψ−c
ε .

This gives us the following dual formulation

(KDε) = sup
φ∈C0(X),ψ∈C0(Y )

Kε(φ,ψ)

with
Kε(φ,ψ) = ⟨φ|µ⟩+ ⟨ψ|ν⟩ − ε⟨e

φ⊕ψ−c
ε |µ⊗ ν⟩,

which is a concave maximization problem.

Remark 11 (Penalization of φ⊕ψ ⩽ c). The dual of the entropy-regularized
(KDε) resembles the dual of the standard optimal transport problem, but
where the hard constraint φ ⊕ ψ ⩽ c is replaced by a soft penalization: for

small values of ε, e
φ⊕ψ−c

ε is small only φ⊕ψ−c is not much larger than zero.

Lemma 26 (Weak duality). For any potentials (φ,ψ) ∈ C0(X)×C0(Y ) and
any transport plan γ ∈ Γ(µ, ν), one has

Kε(φ,ψ) ⩾ ⟨c|γ⟩+ εH(γ | µ⊗ ν),

with equality if γ = e
φ+ψ−c

ε µ⊗ν. In particular, weak duality (KPε) ⩾ (KDε)
holds.

Proof. Denote f = φ+ψ−c
ε . Then,

⟨φ|µ⟩+ ⟨ψ|ν⟩ − ε⟨e
φ+ψ−c

ε |µ⊗ ν⟩ = ⟨c|γ⟩+ ε⟨f |γ⟩ − ε⟨ef |µ⊗ ν⟩
⩾ ⟨c|γ⟩+ εH(γ | µ⊗ ν),

with equality if and only if the density of γ with respect to µ⊗ ν is ef . □

Lemma 27 (Optimality condition). The gradients of Kε are given by:

∇φKε(φ,ψ) = µ−ΠX#e
φ⊕ψ−c

ε µ⊗ ν

∇ψKε(φ,ψ) = ν −ΠY#e
φ⊕ψ−c

ε µ⊗ ν

Proof. We compute the �rst gradient, the second being similar. Let (φ,ψ) ∈
C0(X)× C0(Y ) and let v ∈ C0(X). Then,

1

t
(Kε(φ+ tv, ψ)−Kε(φ,ψ)) = ⟨v|µ⟩ − ε

t
⟨e

(φ+tv)⊕ψ−c
ε − e

(φ)⊕ψ−c
ε |µ⊗ ν⟩.

Taking the limit as t→ 0, we get

⟨∇Kε(φ,ψ)|⟩ = ⟨v|µ⟩ − ⟨ve
φ⊕ψ−c

ε |µ⊗ ν⟩

= ⟨v|µ−ΠX#e
φ⊕ψ−c

ε µ⊗ ν⟩. □

Remark 12 (Existence of a maximizer to (KDε) implies strong duality). If
the dual problem admits a maximizer (φ,ψ) ∈ C0(X) × C0(Y ), then the
optimality conditions read ΠX#γ = µ and ΠY#γ = ν, where

γ = e
φ⊕ψ−c

ε µ⊗ ν.

Thus, by Lemma 26, we see that γ is a minimizer for the primal problem,
and that strong duality holds.
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Lemma 28 (Uniqueness of maximizer up to a constant). If (φ∗, ψ∗) is a
maximizer of (KDε), then for any other maximizer (φ,ψ) of (KDε), there
exists a constant C such that

φ = φ∗ + C µ-a.e., ψ = ψ∗ − C ν-a.e..

Proof. Let φ,ψ be another maximizer of (KDε), and let

φ′ =
1

2
φ+

1

2
φ∗, ψ′ =

1

2
ψ +

1

2
ψ∗.

Then, by optimality of (φ,ψ) and (φ∗, ψ∗), we have

0 ⩾ Kε(φ′, ψ′)− 1

2
Kε(φ′, ψ′)− 1

2
Kε(φ∗, ψ∗)

= −
∫ (

e
φ′⊕ψ′−c

ε − 1

2
e
φ∗⊕ψ∗−c

ε − e
1
2
φ⊕ψ−c

ε

)
dµ⊗ ν.

By strong convexity of t 7→ et, this is possible if and only if φ′⊕ψ′ = φ∗⊕ψ∗

µ⊗ν�almost everywhere. Now, choose x∗ ∈ sptµ, and de�ne C = ⟨φ−φ∗|µ⟩.
Then, expanding the square in the following expression and using Fubini's
theorem, we obtain

0 =

∫
(φ∗ ⊕ ψ∗ − φ⊕ ψ)2dµ⊗ ν

=

∫
(φ∗(x)− φ(x)− C + ψ∗(y)− ψ(y) + C)2d(µ⊗ ν)

=

∫
(φ∗(x)− φ(x)− C)2dµ(x) +

∫
(ψ∗(y)− ψ(y) + C)2dν(y) □

5.3. Existence of a solution to the dual. We now prove the existence of
a solution to the dual problem. As in optimal transport the trick is to prove
that the maximum can be taken over a compact subset of C0(X) × C0(Y ),
where the potentials are uniformly continuous. This is obtained by taking
the maximum with respect to one of the two variables only. For instance, let
ψ ∈ C0(Y ). Then, the maximum of Kε(·, ψ) is attained for some φ satisfying

∇φKε(φ,ψ) = 0 = µ−ΠX#e
φ⊕ψ−c

ε µ⊗ ν.

A su�cient condition is that for µ-almost every x ∈ X,

1 =

∫
Y
e
φ(x)+ψ(y)−c(x,y)

ε dν(y) = e
φ(x)
ε ⟨e

ψ−c(x,·)
ε |ν⟩.

De�nition 18 ((c, ε)-Transform). We de�ne the (c, ε)�transform of ψ ∈
C0(Y ) and the (c, ε)�transform of φ ∈ C0(X) by

ψc,ε(x) = −ε log
(
⟨e

ψ−c(x,·)
ε |ν⟩

)
φc,ε(y) = −ε log

(
⟨e

φ−c(·,y)
ε |µ⟩

) (5.22)

Remark 13 (Convergence to the c-transform as ε → 0). Bounding the term
in the exponential in the integral de�ning ψc,ε from below, one clearly sees

ψc,ε(x) ⩽ min
y∈spt(ν)

c(x, y)− ψ(y). (5.23)
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On the other hand, by de�nition of the support of ν and by continuity of
c(x, y)− ψ(y), for any η > 0 there exists a measurable set A ⊆ spt(A) with
ν(A) > 0 and such that

∀z ∈ A, c(x, z)− ψ(z) ⩽ min
y∈spt(ν)

c(x, y)− ψ(y) + η = η

Then,

ψc,ε(x) ⩾ −ε log
(∫

A
e
ψ(z)−c(x,z)

ε dν(z)

)
⩾ −ε log

(∫
A
e

miny∈spt(ν) c(x,y)−ψ(y)+η

ε dν(z)

)
⩾ min

y∈spt(ν)
c(x, y)− ψ(y) + η − ε log ν(A)

Thus, lim infε→0 ψ
c,ε(x) ⩾ miny∈spt(ν) c(x, y)−ψ(y)+ η. Since this holds for

all η > 0, we deduce with (5.23) that if spt(ν) = Y , then

lim
ε→0

ψc,ε(x) = ψc(x).

Lemma 29 (Modulus of continuity). For any (φ,ψ) ∈ C0(X)× C0(Y ), the
transforms ψc,ε and φc,ε have the same modulus of continuity as the cost c.

Proof. We only prove this property for ψc,ε, denoting ωc the continuity mod-
ulus of the cost c:

ψc,ε(x′)− ψc,ε(x) = ε

(
log
(
⟨e

ψ−c(x,·)
ε |ν⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε |ν⟩

))
= ε

(
log

(
⟨e

ψ−c(x′,·)
ε e

c(x′,·)−c(x,·)
ε |ν⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε |ν⟩

))
⩽ ε

(
log

(
⟨e

ψ−c(x′,·)
ε e

ωc(dX (x,x′))
ε |ν⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε |ν⟩

))
⩽ ωc(dX(x, x

′)). □

Corollary 30 (Existence of solution to (KDε)). The supremum in the de�-
nition of (KDε) is attained for a couple (φ,ψ) ∈ C0(X)× C0(Y ) such that

• φ,ψ have the same continuity modulus as c,
• ⟨ψ|ν⟩ = 0

Then, (KPε) = (KDε) and the unique solution to (KPε) is given by

γ = e
φ⊕ψ−c

ε µ⊗ ν.

Proof. We note that by de�nition of the (c, ε) and (c, ε)�transforms,

sup
φ,ψ

Kε(φ,ψ) = sup
ψ

Kε(ψc,ε, ψ)

= sup
ψ

Kε(ψc,ε, (ψc,ε)c,ε)

= sup
ψ

Kε(((ψc,ε)c,ε)c,ε, (ψc,ε)c,ε)

= sup
ψ∈C0,ωc (X)

Kε(ψc,ε, ψ),
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where C0,ω(X) denotes the space of continuous functions with continuity
modulus ω. Since for any constant C ∈ R, one has Kε(φ + C,ψ − C) =
Kε(φ,ψ), we may impose without loss of generality that ⟨ψ|ν⟩ = 0 in the
optimization problem. Thus,

(KDε) = sup
ψ∈C0,ωc (Y )|⟨ψ|ν⟩=0

Kε(ψc,ε, ψ).

Since ψ belongs to C0,ωc(Y ), we have

osc(ψ) := max
Y

ψ −min
Y

ψ ⩽ osc(c) ⩽ 2 ∥c∥∞ .

Using in addition that ⟨ψ|ν⟩ = 0, we get ∥ψ∥∞ ⩽ 2 ∥c∥∞. This shows that
the set

{ψ ∈ C0,ωc(Y ) | ⟨ψ|ν⟩ = 0}
is a compact subset of C0(Y ). Finally, we check that ψ 7→ Kε(ψc,ε, ψ) is
continuous on this set, and we conclude by Arzelà-Ascoli's theorem that the
maximum in (KDε) is attained. □

5.4. Sinkhorn algorithm as block-coordinate ascent. We study in this
section the algorithm that consists in computing a maximizer to the dual
problem (KDε) by optimizing the functional Kε alternatively in φ and ψ.
The iterations are de�ned by{

φ(k+1) = (ψ(k))c,ε

ψ(k+1) = (φ(k+1))c,ε.
(5.24)

or equivalently ψ(k+1) = S(ψ(k)) where

S(ψ) = (ψc,ε)c,ε. (5.25)

Remark 14 (Fixed point). Assume that (φ,ψ) is a �xed point of the algo-

rithm, i.e. φ = ψc,ε and ψ = φc,ε, and denote γ = e
φ⊕ψ−c

ε µ⊗ ν. Thus,

max
φ̂

Kε(φ̂, ψ) = Kε(φ,ψ).

The �rst-order optimality condition for this problem, ∇φKε(φ,ψ) = 0, im-
plies that ΠX#γ = µ. Similarly, we get ΠY#γ = ν, showing by Lemma 26
that (φ,ψ) maximizes (KDε) and γ minimizes (KPε).

Remark 15 (Relation to matrix factorization). Algorithm (5.24) is in fact
a reformulation, using a logarithmic change of variable, of Sinkhorn's algo-
rithm for �nding a factorization of non-negative matrices [38]. Let X =
{x1, . . . , xN}, Y = {y1, . . . , yM}, cij = c(xi, yj), µ =

∑
i µiδxi and ν =∑

j νjδyj . Then, by the discussion of the previous paragraph, γ =
∑

i,j γijδij
is a solution to the entropy-regularized optimal transport problem between
µ and ν if there exists φ ∈ RN and ψ ∈ RN such that

γij = e
φi+ψj−cij

ε

s.t.

{
∀i ∈ {1, . . . , N},

∑
1⩽j⩽N γij = µi

∀j ∈ {1, . . . , N},
∑

1⩽i⩽N γij = νj .
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Denote Kij = e−
cij
ε . The iterates of Sinkhorn's algorithm are

φk+1
i = −ε log

(∑
j e

ψkj −cij
ε νj

)
ψk+1
j = −ε log

(∑
i e

φk+1
i

−cij
ε µi

) (5.26)

One may also record the transport plan γk induced by φk and ψk:

γkij = e
φki +ψ

k
j −cij
ε µiνj

Denoting uki = e
φk

ε µi, v
k
i = e

φk

ε νi and Kij = e
−cij
ε , we may even simplify

the iterations further: 
uk+1
i = µi/(Kv

k)i

vk+1
j = νj/(K

Tuk+1)j

γk = diag(vk)K diag(uk),

(5.27)

where diag(x) is the square diagonal matrix with entries xi. It is also possible
to drop the variables u, v and write the iterations purely in term of γ. In
practice, this is not advised because of memory requirements: the memory
to store u and v is N +M while the memory to store γ is NM . In addition,
the use of the variables u and v instead of φ,ψ is not advised, because the
iteration (5.27) is less stable numerically than the formula (5.26) for small
values of ε. In particular, for (5.26), one may use robust implementation of
the LogSumExp function provided in most machine learning frameworks.

The following two properties are very similar to some properties holding
for the standard c-transform. In the following, we denote ∥·∥o,∞ the pseudo-
norm of uniform convergence up to addition of a constant:

∥f∥o,∞ = inf
a∈R

∥f + a∥∞ =
1

2
(sup f − inf f).

This pseudo-norm will be very useful to state convergence results for Sinkhorn's
algorithm for solving the regularized optimal transport problem. We �rst
note that the Sinkhorn map is 1-Lipschitz with respect to this norm.

Proposition 31. Let ψ,ψ ∈ RY . Then,
(i) for a ∈ R, (ψ + a)c,ε = ψc,ε + a.

(ii)
∥∥∥ψc,ε − ψ

c,ε
∥∥∥
∞,o

⩽
∥∥ψ − ψ

∥∥
∞,o

.

Similar properties hold for the map φ ∈ RX 7→ φc,ε.

Proof. (i) follows immediately from the de�nition
(ii) We �rst show that the map is 1-Lipschitz with respect to the norm of

uniform convergence:

ψc,ε(x)− ψ
c,ε
(x)

= ε log

(
⟨e

ψ−c(x,·)
ε |ν⟩

)
− ε log

(
⟨e

ψ−c(x,·)
ε |ν⟩

)
= ε log

(
⟨e

ψ−c(x,·)
ε e

ψ−ψ
ε |ν⟩

)
− ε log

(
⟨e

ψ−c(x,·)
ε |ν⟩

)
⩽
∥∥ψ − ψ

∥∥
∞
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Taking the maximum over x leads to ∥ψc,ε − ψ
c,ε∥ ⩽ ∥ψ − ψ∞∥. The same

inequality with ∥·∥o,∞ will follow easily using (i) and the de�nition of the

norm ∥·∥∞,o as a minimum. □

5.5. Linear convergence of Sinkhorn's algorithm. In order to prove
convergence, we need to strengthen the 1-Lipschitz estimation from Propo-
sition 31. This allows to apply Picard's �xed point theorem to get the
contraction of the Sinkhorn iteration (5.25). The proof we present in this
chapter has been �rst introduced in course notes of Vialard [41].

Theorem 32 (Convergence of Sinkhorn, [41]). The map S is a contraction
for ∥·∥o,∞. More precisely,∥∥S(ψ0)− S(ψ1)

∥∥
o,∞ ⩽

(
1− e−2

∥c∥o,∞
ε

)∥∥ψ0 − ψ1
∥∥
o,∞ .

In particular, the iterates (φ(k), ψ(k)) of Sinkhorn's algorithm (5.24) converge
with linear rate to the unique (up to constant) maximizer the regularized dual
problem (KPε).

Remark 16 (Other convergence proofs). The convergence of Sinkhorn's al-
gorithm is usually proven (e.g. in [39]) using a theorem of Birkho� [10].
We refer to the recent book by Peyré and Cuturi [32] for this point of view.
Other convergence proofs exist, see for instance Berman [7] (in the contin-
uous case), and Altschuler, Weed and Rigollet [1], or Carlier [] and Nutz []
for proofs relying on the strong concavity of Kε.

Remark 17 (Convergence speed). This theorem shows that the Sinkhorn
algorithm converges with linear speed, but the contraction constant has a
bad dependency in ε. Denoting C = ∥c∥o,∞, to get an error of η > 0, the
number of iterations must satisfy

(1− e−2C/ε)k ≲ η

i.e. k ≳ e2C/ε log(1/η),

where the second inequality holds for small values of ε. This bad dependency
in ε seems to be a practical obstacle to choosing a very small smoothing
parameter. This calls for scaling techniques, as for the auction's algorithm,
and was considered by Schmitzer [36, 37].

Remark 18 (Implementation). The numerical implementation of Sinkhorn's
algorithm is more complicated than it seems:

• In a naive implementation, the computation of the smoothed c-
transforms (5.22) has a cost proportional to Card(X)Card(Y ). This
can be alleviated for instance when X = Y are grids and when the
cost is a ∥·∥p norm, using fast convolution techniques (see e.g. [40] or

[32, Remark 4.17]), or when the cost is the squared geodesic distance
on a Riemannian manifold [16, 40].

• The convergence speed can be slow when the supports of the data
X,Y are �far� from each other, and when ε is small. This di�culty is
cirvumvented using the ε-scaling techniques mentioned above, often
combined with multi-scale (coarse-to-�ne) strategies, studied in this
context by Benamou, Carlier and Nenna [6] and Schmitzer [36].
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• Finally, some numerical di�culties (divisions by zero) can occur when
ε is small and the potential ψ is far from the solution.

The book of Cuturi and Peyré present these di�culties in more details and
explain how to circumvent them [32]. In addition to the works already
cited, we refer to the PhD work of Feydy [14, 19], and especially to the
implementation of regularized optimal transport in the library GeomLoss1.

In order to prove this theorem, we will make use of the following elemen-
tary lemma, giving an upper bound on the total variation distance between
two Gibbs kernels.

Lemma 33. Let u0, u1 ∈ C0(Y ) and ν ∈ P(Y ). We denote gi = eui/Ziν
where Zi = ⟨eui |ν⟩. Then,

∀v ∈ C0(Y ), |⟨v|g1 − g0⟩| ⩽ 2(1− e−2∥u0−u1∥o,∞) ∥v∥o,∞ .

Proof. Note that by de�nition the Gibbs kernel gi does not change if a con-
stant is added to ui, so that we can assume that

ε := ∥u0 − u1∥o,∞ = ∥u0 − u1∥∞ .

Using the inequality u0 − ε ⩽ u1 ⩽ u0 + ε, one easily shows that

eu0−ε ⩽ eu1 ⩽ eu0+ε.

Integrating this inequality multiplied by ν, this implies that

e−εZ0 ⩽ Z1 ⩽ eεZ0, i.e. e
−ε 1

Z0
⩽

1

Z1
⩽ eε

1

Z0
.

Multiplying this last inequality with the �rst one, we get

e−2ε e
u0

Z0
⩽
eu1

Z1
⩽ e2ε

eu0

Z0
.

Let v ∈ C0(Y ) be non-negative. Then,

e−2ε⟨v|g0⟩ ⩽ ⟨v|g1⟩ ⩽ e2ε⟨v|g0⟩,
thus implying

|⟨v|g1 − g0⟩| ⩽ (1− e−2ε)max(⟨v|g0⟩, ⟨v|g1⟩) ⩽ (1− e−2ε) ∥v∥∞ .

If v is not positive, we apply the previous inequality to v̂ = v −minY v ⩾ 0,
remarking that ∥v̂∥∞ = 2 ∥v∥∞,o. □

Proof of Theorem 32. Consider ψ0, ψ1 ∈ C0(Y ). We will �rst give an upper
bound on ∥ψc,ε1 − ψc,ε0 ∥o,∞, and to do that we will give an upper bound on

A(x, x′) = (ψc,ε1 (x)− ψc,ε0 (x))− (ψc,ε1 (x′)− ψc,ε0 (x′))

which is independent of x, x′ ∈ X. For this purpose, we introduce ψt =
ψ0 + tv with v = ψ1 − ψ0, and

B(t, x, x′) = ψc,εt (x)− ψc,εt (x′)

= ε log

(
⟨e

ψt−c(x
′,·)

ε |ν⟩
)
− ε log

(
⟨e

ψt−c(x
′,·)

ε |ν⟩
)

1https://www.kernel-operations.io/geomloss/
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Then,

∂tB(t, x, x′) = ⟨v|gx,t − gx′,t⟩, with gx,t =
e
ψt−c(x

′,·)
ε ν

⟨e
ψt−c(x′,·)

ε |ν⟩
.

Lemma 33 directly gives us∣∣∂tB(t, x, x′)
∣∣ ⩽ 2(1− e−2∥c(x′,·)−c(x,·)∥∞) ∥v∥∞,o .

We therefore get∣∣A(x, x′)∣∣ ⩽ ∫ 1

0

∣∣∂tB(t, x, x′)
∣∣ ⩽ 2(1− e−2∥c∥∞,o) ∥ψ1 − ψ0∥∞,o .

Taking the supremum over x, x′ ∈ X, we obtain

∥ψc,ε1 − ψc,ε0 ∥o,∞ =
1

2
max
x,x′

∣∣A(x, x′)∣∣ ⩽ (1− e−2
∥c∥o,∞

ε

)
∥ψ1 − ψ0∥o,∞ .

We conclude the proof of the contraction inequality by remarking that the
map φ 7→ φc,ε is 1-Lipschitz, thanks to Proposition 31.(ii). □

6. Wasserstein distances

6.1. p-Wasserstein spaces over compact metric spaces.

De�nition 19 (Wassertein distance). Let (X,dX) be a compact metric
space and p ⩾ 1. The Wasserstein distance between two probability measures
µ, ν ∈ P(X) is de�ned as

Wp(µ, ν) =

(
min

γ∈Γ(µ,ν)
⟨cp|γ⟩

)1/p

, cp(x, y) := dX(x, y)
p (6.28)

Theorem 34 (Kantorovich-Rubinstein). The Wasserstein-1 distances admit
the following formulation:

W1(µ, ν) = sup
{
⟨f |µ⟩ − ⟨f |ν⟩ | f ∈ C0(X), Lip(f) ⩽ 1

}
. (6.29)

Proof. Note that for c = dX , ψ
c(x) = miny∈X d(x, y) − ψ(y) is 1-Lipschitz

as a in�mum of 1-Lipschitz functions. This implies that the dual problem
may be rewritten as

min
ψ∈C0(X)|Lip(ψ)⩽1

⟨ψc|µ⟩+ ⟨ψ|ν⟩.

If ψ is 1-Lipschitz, then d(x, y)− ψ(y) ⩾ −ψ(x), so that

ψc(x) = inf
y
d(x, y)− ψ(y) = −ψ(x).□

Maximal correlation?

Theorem 35 (Properties of Wp). The following properties hold:

(i) W1 ⩽ Wp for all p ⩾ 1,
(ii) Wp is a distance on P(X),
(iii) Wp metrizes weak convergence.
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Proof. (i) The �rst claim is a consequence of the Jensen's inequality.
(ii) To prove the second claim, we note that the stability of optimal transport
plans (Theorem 14) implies in particular that the Wasserstein distances Wp

p

are weak∗ continuous with respect to their arguments. To establish the
triangle inequality, we let µ, ν, σ ∈ P(X) and we consider empirical measures

µN =
1

N

N∑
i=1

δxiN
, νN =

1

N

N∑
i=1

δyiN
, σN =

1

N

∑
i=1

δziN
.

converging weak∗ to µ, ν and σ respectively. Without loss of generality, we
can reorder the points so that the optimal transport map between µN and
νN is given by xiN → yiN , and that the optimal transport map beween νN
and σN is yiN → ziN . Then,

Wp(µN , σN ) ⩽

 1

N

∑
1⩽i⩽N

∥∥xiN − ziN
∥∥p1/p

⩽

 1

N

∑
1⩽i⩽N

∥∥xiN − yiN
∥∥p1/p

+

 1

N

∑
1⩽i⩽N

∥∥yiN − ziN
∥∥p1/p

= Wp(µN , νN ) +Wp(νN , σN )

We conclude by taking the limit N → +∞.
(iii) Since W1 ⩽ Wp, if a sequence (µn) converges to µ with respect to Wp,
then it also converges to µ with respect to W1. Kantorovich-Rubinstein's
formula then implies that for any function f ∈ C0(X) with Lip(f) ⩽ 1
one has limn→+∞

∫
fdµn =

∫
fdµ, thus proving weak∗ convergence of (µn)

towards µ as n→ +∞. Conversely, if µn converges weak∗ to µ, then by the
weak∗ continuity of Wp

p we get

lim
n→+∞

Wp(µn, µ) = W1(µ, µ) = 0. □

Theorem 36 (Subdi�erential of Wp
p). Let µ ∈ P(X). The function F =

Wp
p(µ, ·) is convex and continuous in P(X) × P(X). Its subdi�erential is

given by

∂F (ν) =
{
ψ ∈ C0(X) | ⟨ψc|µ⟩+ ⟨ψ|ν⟩ = Wp

p(µ, ν)
}
.

In particular, if the dual problem maxψ⟨ψc|µ⟩+ ⟨ψ|ν⟩ has a unique solution
ψ up to an additive constant, then for any measure ν ′ ∈ P(X) one has

d

dt
F (ν + t(ν ′ − ν))

∣∣
t=0

= ⟨ψ|ν ′ − ν⟩.

Proof. Let (ψc, ψ) ∈ C0(X)×C0(X) be a maximizer of the dual Kantorovich
problem. Then, for all measures ν ′ ∈ P(X)× P(X) one has

F (ν ′) = Wp
p(µ, ν

′) ⩾ ⟨ψc|µ⟩+ ⟨ψ|ν ′⟩
= ⟨ψc|µ⟩+ ⟨ψ|ν⟩+ ⟨ψ|ν ′ − ν⟩
= F (ν) + ⟨ψ|ν ′ − ν⟩,
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thus showing that ψ belong to ∂F (ν). To prove the converse, we introduce

K̃µ(ψ) = −
∫
ψcdµ. Then,

K̃∗
µ(ψ) = sup

ν∈P(X)
⟨ν|ψ⟩+ ⟨µ|ψc⟩ = Wp

p(µ, ν) = F (ν).

By subdi�erential calculus, we have

ψ ∈ ∂F (ν) ⇐⇒ ν ∈ ∂F ∗(ψ) = ∂K̃µ(ψ)

⇐⇒ ψ ∈ argmax (KD),

where the last equivalence comes from Proposition 16. □

Remark 19 (Horizontal perturbations in the discrete case). For simplicity,
assume that µ = 1

N

∑
i δxi and ν = 1

N

∑
i δyi and that there exists unique

optimal transport maps S : µ → ν and T : ν → ν (which are thus inverse
of each other). Let ξ be a smooth and compactly supported vector �eld.
Then, for small values of t, the map (id + tξ) ◦ S is optimal between µ and
νt = (id + tξ)#ν. Thus,

Wp
p(νt, µ) =

∫
∥y − (id + tξ) ◦ T (y)∥p dµ(y),

directly implying that

d

dt
Wp

p(νt, µ) =

∫
d

dt
∥y − (id + tξ) ◦ S(y)∥p dµ(y),

=

∫
p ∥y − S(y)∥p−2 ⟨ξ ◦ S(y)|S(y)− y⟩dµ(y),

=

∫
p ∥T (x)− x∥p−2 ⟨ξ(x)|x− T (x)⟩dν(x)

Letting T be the optimal transport map between µ. More concretely, if we
denote

F̂ : (z1, . . . , zN ) ∈ RdN 7→ F (
1

N

∑
i

δzi , ν),

then the previous computation shows that

∇ziF̂ (x1, . . . , xN ) =
p

N
∥T (xi)− xi∥p−2 (xi − T (xi)).

6.2. p-Wasserstein geodesics on Rd. In this subsection, we provide a
short introduction to the geometry of the Wasserstein space on Rd. We refer
to [2] for a more complete exposition.

De�nition 20 (Geodesic). In a metric space (X,dX), a curve ω : [0, 1] → X
is called a constant speed geodesic if

∀s, t ∈ [0, 1],dX(ωs, ωt) ⩽ |t− s| dX(ω0, ω1).

A space is called geodesic if any pair of points in X is joined by a geodesic.

Remark 20. Let ω be a constant speed geodesic and assume that s ⩽ t.
Then, the triangle inequality gives us

dX(ω0, ω1) ⩽ dX(ω0, ωs) + dX(ωs, ωt) + dX(ωt, ω1)

⩽ ((1− t) + (s− t) + (1− t))dX(ω0, ω1)

⩽ dX(ω0, ω1).
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Thus, all inequalities must in fact be equalities, showing in particular that

dX(ωs, ωt) = |t− s| dX(ω0, ω1).

Theorem 37 (Geodesics inWp). Let X be a convex subset of Rd, let µ0, µ1 ∈
P(X) and let γ ∈ Γ(µ, ν) be an optimal transport plan for the cost cp(x, y) =
∥x− y∥p. Then, the curve t ∈ [0, 1] 7→ µt ∈ P(X) is a constant speed
geodesic between µ0 and µ1, with

µt = Pt#γ, where Pt : (x, y) 7→ (1− t)x+ ty

Moreover, all constant speed geodesics between µ0 and µ1 are of this form.
In particular, if µ0 or µ1 are absolutely continuous with respect to the
Lebesgue measure, then the geodesic between µ0 and µ1 is unique.

Example 6 (Geodesics when a transport map exists). If there exists an op-
timal transport map T between µ0 and µ1, then the geodesic de�ned above
is µt = ((1− t)id + tT )#µ0. In the discrete case, if

µ0 =
1

N

∑
1⩽i⩽N

δxi0
and µ1 =

1

N

∑
1⩽i⩽N

δxi0

are two empirical measures, and if the points are ordered such that

Wp
p(µ0, µ1) =

1

N

∑
1⩽i⩽N

∥∥xi1 − xi0
∥∥p ,

a geodesic between µ0 and µ1 is given by

µt =
1

N

∑
x∈X0

δ(1−t)xi0+txi1
.

Thus, µt provides an interpolation between the supports of µ0 and µ1.

Remark 21 (Many geodesics). It is quite easy to construct examples of mea-
sures µ0 and µ1 such that there exists more than one transport map between
µ0 and µ1. For instance, take µ0 = 1

N

∑
i δ(i/N,0) and µ1 = 1

N

∑
i δ(0,i/N).

Then, every bijection between the supports of µ0 and µ1 is optimal for p = 2,
and therefore there exists an countably in�nite number of geodesics between
µ0 and µ1. In particular, this shows that the space (P([0, 1]2,W2) cannot
be embedded isometrically into any Banach space.

Proof of Theorem 37. One can observe that γst = (Ps, Pt)#γ has marginals
µs and µt. In particular,

Wp
p(µs, µt) ⩽

∫
∥xs − xt∥p dγst(xs, xt)

=

∫
∥(1− s)x+ sy − (1− t)x+ sx∥p dγ(x, y)

= (t− s)p
∫

∥x− y∥o dγ(x, y) = (t− s)oWp
p(µ0, µ1),

thus proving that µt is a constant speed geodesic.
Let us now prove that all geodesics are of this form. For every T ∈ N and

any i ∈ {1, . . . , T + 1}, denote γTi,i+1 an optimal transport between µti and
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µti+1 , with ti = (i− 1)/T . By the gluing lemma recalled below, there exists

ΓT ∈ P(XT+1) whose projection on (Xi, Xi+1) agrees with γ
T
i,i+1. Moreover,(∫

∥x1 − xT+1∥2 dΓT (x1, . . . , xT+1)

)1/2

⩽
T−1∑
j=0

(∫
∥xi+1 − xi∥2 dΓT (x1, . . . , xT+1)

)1/2

=

T+1∑
j=1

W2(µti , µti)

= W2(µ0, µ1)

This implies in particular that γT = (Π1,ΠT+1)#Γ
T , but also that for ΓT -

almost every x = (x1, . . . , xT+1), the points x1, . . . , xT+1 are aligned, i.e.
xi = (1 − ti)x1 + tixT+1. Thus, we see that ΓT = (P0, P1/T , . . . , P1)#γ

T

with Pt(x, y) = (1 − t)x + ty. In particular, we have µt = Pt#γ
T for all

t ∈ {0/T, . . . , T/T}. One can �nally check that if γ is a weak∗-limit of γ,
then for all t ∈ [0, 1], one has µt = Pt#γ. □

Lemma 38 (Gluing). Let X1, . . . , XN be compact metric spaces, and for
any 1 ⩽ i ⩽ N − 1 consider a transport plan γi ∈ Γ(µi, µi+1). Then, there
exists γ ∈ P(X1, . . . , XN ) such that for all i ∈ {1, . . . , N − 1}, πi,i+1γ = γi,
where πi,i+1 : X1 × · · · ×XN → Xi ×Xi+1 is the projection.

Proof. See Lemma 5.3.2 and Remark 5.3.3 in [3]. □

6.3. Geodesic convexity with respect to W2 on Rd.

De�nition 21 (Geodesic convexity for sets). A set S ⊆ Pac
2 (Rd) is called

geodesically convex if for any µ0, µ1 ∈ S, any W2�geodesic between µ0 and
µ1 remains in S.

Example 7 (Geodesically convex subsets of (P(X),W2).). Example of geodesi-
cally convex subsets of P(X) include :

(a) the set obtained by translating and shearing a reference measure µ,

{T#µ | T (x) = Ax+ b, A symmetric,A ⩾ 0}

In particular, the set of Gaussians densities is geodesically convex in
P(Rd). The restriction of the Wasserstein distance on this set can
be computed in near closed-form, and called the Bures-Wasserstein
metric.

(b) the set Pac(X) of absolutely continuous measures
(c) the set of probability densities whose density is upper bounded by a

constant
(d) the set of measures of the form µ = 1

N

∑
i δxi (where the points xi

are not necessary distinct) is convex under some geodesics, namely
those induced by bijections (cf Example 6.

Proposition 39. The set Pac(X) is geodesically convex. More precisely,
given µ0 ∈ Pac(X) and µ1 ∈ P(X), one has µt ∈ Pac(X) for any t ∈ [0, 1).

Proof. Let µ0 ∈ Pac(X), µ1 ∈ P(Rd) and φ ∈ Lip(X) be a convex function
so that µt = ((1−t)id+t∇φ)#µ0 is the unique Wasserstein geodesic between
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µ0 and µ1. De�ne Tt = (1− t)id + t∇φ. Then, for any x, y ∈ spt(µ0),

⟨Tt(x)− Tt(y)|x− y⟩ = (1− t) ∥x− y∥2 + t⟨∇φ(x)−∇φ(y)|x− y⟩

⩾ (1− t) ∥x− y∥2 ,
where we used the monotonicity of the gradient of convex functions to get
the inequality. In particular, if x ̸= y and t < 1, then Tt(x) ̸= Tt(y) and the
inverse map T−1

t is well-de�ned. Moreover, the same inequality shows that
T−1
t is Lipschitz with constant L = 1/(1 − t). In addition, T−1

t transports
µt to µ0, i.e. µt(B) = µ0(T

−1
t (B)) for any Borel set B. Thus, if N is

Lebesgue-negligible, T−1
t (N) is also negligible (by the next lemma), so that

µt(N) = µ0(T
−1
t (N)) = 0. This implies that µt ≪ λ. □

Lemma 40. If N is Lebesgue-negligible, and if S is Lipschitz, then S(N) is
Lebesgue-negligible.

De�nition 22 (Geodesic convexity for functions). A function F : Pac(X)
to R ∪ {+∞} is geodesically convex if and only if for any µ0, µ1 ∈ Pac(W ),

F (µt) ⩽ (1− t)F (µ0) + tF (µ1) (6.30)

where (µt) is the W2�geodesic. Following McCann, a geodesically convex
function is often called displacement convex.

De�nition 23 (Internal energy). Let A : R+ → R ∪ {+∞}. The înternal
energy associated to A generalizes Boltzmann's functional. It is de�ned as

EA : µ ∈ P(X) 7→

{∫
ΩA(ρ(x))dx if µ≪ λ and ρ := dµ

dλ

+∞ if not
(6.31)

Theorem 41 (McCann). Let A : R+ → R+ ∪ {+∞} be such that

(i) A(0) = 0 and
(ii) r 7→ A(r−d)rd is convex non-increasing.

Then internal energy EA is displacement convex on P(X).

We will call conditions (i) and (ii) McCann's conditions. Example of
functions A that satisfy such conditions include

• A(r) = rq for q > 1;
• A(r) = r log r;
• A(r) = −rm for m ∈ [1− 1/d, 1).

This theorem is a corollary of the more general result below. Indeed, take
µ0 = µ ∈ Pac(X), φ0 =

1
2 ∥·∥

2 and φ1 a convex function such that T = ∇φ1

is the optimal transport map between µ0 and µ1. Then,

µt = ((1− t)∇φ0 + t∇φ1)#µ = ((1− t)id + tT )#µ0

is the unique Wasserstein geodesic between µ0 and µ1.

Theorem 42. Let µ ∈ Pac(X) and let φ0, φ1 ∈ Lip(X) be two convex
functions such that ∇φi(X) ⊆ X, and let φt = (1− t)φ0+ tφ1. Assume that
A : R+ → R+ satis�es McCann's conditions. Then

t ∈ [0, 1] 7→ EA(∇φt#µ)
is convex.
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We only prove this theorem when the functions φ0 and φ1 are C2 and
uniformly convex, which implies that the gradients ∇φi are di�eomorphisms
from X to ∇φi(X). The proof in the general case can be found in the article
of McCann [26] or in Villani's �rst book [42].

Lemma 43. Assume that µ ∈ Pac(X) has density ρ and that φ ∈ C2(X) is
uniformly convex . Then

EA(∇φ#µ) =

∫
Rd
A

(
ρ(x)

det(D2φ(x))

)
det(D2φ(x))dx.

Proof. Since T is a di�eomorphism, the measure T#µ is absolutely continu-
ous with respect to the Lebesgue measure. We denote σ the density of T#µ,
which satis�es

σ(T (x)) det(DT (x)) = ρ(x)

Moreover, by the change of variable formula y = T (x) and using det(DT (x)) =
|detDT (x))|, which follows from the convexity of T , we get

EA(∇φ#µ) =

∫
A(σ(y))dy

=

∫
A(σ(T (x))) det(DT (x))dx

=

∫
A

(
ρ(x)

det(DT (x))

)
det(DT (x))dx □

Lemma 44. The map M 7→ det(M)1/d is concave over the set of symmetric
positive d-by-d matrices.

Proof. Recall Hadamard's formula for a symmetric positive matrix M :

det(M) = min
e1,...,ed orthonormal

⟨e1|Me1⟩ · · · ⟨ed|Med⟩,

where the minimum is taken over orthonormal bases. Given a �xed orthonor-
mal basis e1, . . . , ed consider f(M) = (⟨e1|Me1⟩ · · · ⟨ed|Med⟩)1/d. Then f is
concave over the set of matrices M satisfying ⟨ei|Mei⟩ ⩾ 0 as the composi-

tion ofthe geometric mean (x ∈ (R+)d 7→ (x1 · · ·xd)1/d) with linear functions.
Then, det(·)1/d is concave over the set of symmetric positive matrices, as a
minimum of concave functions. □

Proof of Theorem 42. If φ0, φ1 are C2 and uniformly convex, the interpolant
φt := (1− t)φ0+ tφ1 is also C2 and uniformly convex. Hence, by Lemma 43,

EA(∇φt#µ) =
∫
X
B(D(x, t))ρ(x)dx,

where we have set B(r) = A(r−d)rd and D(x, t) = (det(D2φt(x))/ρ(x))
1/d.

By Lemma 44, for all x ∈ X, t ∈ [0, 1] 7→ D(x, t) is concave so that

D(x, t) ⩾ (1− t)D(x, 0) + tD(x, 1).

Hence, since B is non-decreasing and convex,

B(D(x, t)) ⩽ B((1− t)D(x, 0)+ tD(x, 1)) ⩽ (1− t)B(D(x, 0))+ tB(D(x, 1)).

Integrating this inequality gives the desired convexity result. □
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Remark 22 (Displacement convexity in the �linear� case). Assume that T0(x) =
x and T1(x) =M · x where M is a �xed symmetric positive de�nite matrix,
and ρ ∈ Pac(Ω). Then, the 2-Wasserstein geodesic between ρ0 = ρ and
ρ1 = T1#ρ is given by ρt = Tt#, where Tt =Mt ·x, withMt = (1−t)Id+tM .
The density of ρt satis�es ρt(Tt(x)) detDTt(x) = ρ(x), where det(DTt(x)) =
det(Mt) does not depend on x. Then,

EA(ρt) =

∫
A(ρt(y))dy

=

∫
A(ρt(Tt(x))) det(Mt)dx

=

∫
A

(
ρ(x)

det(Mt)

)
det(Mt)dx

Since A(r) = r ln(r), A(r/s)s = rln(r/s) = r(ln(r)− ln(s)). Thus,

EA(ρt) =

∫
A(ρ(x))dx− log(det(Mt))ρ(x)

Using that M 7→ log ◦det(M) is concave on the set of symmetric positive
de�nite matrices, we conclude that t 7→ EA(ρt) is convex.

Corollary 45 (Brunn-Minkowski's inequality). Let K0,K1 be compact sub-
sets of X, and let Kt = (1− t)K0 + tK1. Then,

λ(Kt)
1/d ⩾ (1− t)λ(K0)

1/d + tλ(K1)
1/d.

Proof. Assume that λ(K0), λ(K1) > 0. Let µi = λ|Ki /λ(Ki), let µt be the
geodesic between µ0 and µ1. Then µt is absolutely continuous, with density
ρt, and supported on Kt. The convexity of A(r) = −r1−1/d and Jensen's
inequality implies∫

Kt

A(ρt(x))dλ(x) = λ(Kt)

∫
Kt

A(ρt(x))
dλ(x)

λ(Kt)

⩽ λ(Kt)A

(∫
Kt

ρt(x)
dλ(x)

λ(Kt)

)
= λ(Kt)A(1/λ(Kt)) = −λ(Kt)

1/d

Moreover, for t = 0 and t = 1 we get∫
Ki

A(ρi(x))dλ(x) =

∫
Ki

λ(Ki)A(1/λ(Ki)) = −λ(Ki)
1/d

□

7. Quantization and uniform quantization of measures

8. Embedding of the Wasserstein space

We recall that there exists an explicit isometric embedding of (Pp(R),Wp)
into the space Lp([0, 1]), which maps µ ∈ P(R) to its quantile function Tµ ∈
Lp([0, 1]), i.e. the unique non-decreasing map which transports λ[0,1] onto ν:

∀µ, ν ∈ Pp(R), Wp(µ, ν) = ∥Tµ − Tν∥Lp([0,1]) .
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This embedding is practically very useful, because it allows to simplify
many constructions in the 1D Wasserstein space (geodesics, barycenters,
etc). However, we already saw (Remark 21) that in (Pp(Rd),Wp), there
may exist several geodesics between two probability measures, preventing an
isometric embedding of this space into a Banach space. A natural question
is whether (for instance) there may exist bi-Lipschitz or bi-Hölder embed-
dings of (Pp(Rd),Wp) into Banach spaces, and we will see that the answer
is mostly negative.

8.1. Non-embeddability results.

De�nition 24 (Coarse embedding). Let X,Y be metric spaces. A function
f : X → Y is a coarse embedding if there exists a non-decreasing functions
ρ± : R+ → R+ satisfying

• ρ−(dX(x, y)) ⩽ dY (f(x), f(y)) ⩽ ρ+(dX(x, y))
• limt→+∞ ρ−(t) = +∞.

In particular, if f is bi-Lipschitz or bi-Hölder (or even uniformly con-
tinuous and with uniformly continuous inverse)), the embedding is coarse.
However, note that the de�nition does not imply that f is continuous. The
notion of coarse embedding is therefore extremely weak, so that theorem
establishing the impossibility of coarse embeddings are usually strong and
di�cult theorems. Our aim with this sections is not to present a comprehen-
sive review of the literature on embedding metric spaces into Banach spaces,
but rather to present some striking impossibility results when the source
space is a Wasserstein space over Rd with d > 1.

The �rst result is about coarse embeddability into a Hilbert space, and
was originally proven by Wagner in the context of persistence diagrams in
computational topology [44]. We provide here an (easy) adaptation of the
arguments of Wagner to the Wasserstein setting.

Theorem 46 (Wagner). Let p > 2. Then, there is no coarse embedding of
the Wasserstein space (Pp(Rd),Wp) into a Hilbert space.

The proof of this theorem relies on a characterization of coarse embed-
dability of a metric space in a Hilbert space through the �uniform� coarse
embeddability of �nite subsets, due to P. Nowak [29] (see also [18]), and
relying on Schoenberg's characterization of isometric embeddability into a
Hilbert space.

Theorem 47 (Nowak). A metric space (X,dX) admits a coarse embedding
into a Hilbert space if and only if there exists non-decreasing functions ρ± :
R+ → R+ satisfying limt→+∞ ρ−(t) = +∞, and such that for any �nite
subset A ⊆ X, there exists a coarse embedding fA : A→ ℓ2 satisfying

∀x, y ∈ A, ρ−(dX(x, y)) ⩽ ∥fA(x)− fA(y)∥ ⩽ ρ+(dX(x, y)).

Nowak's theorem was used for instance to prove that the space ℓp = {a ∈
RN |

∑
i |ai|

p < +∞} with p > 2 cannot be coarsely embedded into a
Hilbert space [22]. We will use this result to prove that (Pp,Wp) also cannot
be embedded into a Hilbert space.
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Lemma 48. Given any p ⩾ 1, R ∈ R+ and N ∈ N, the map

ΦR,N : ([−R,R]N , ∥·∥p) → (Pp(R2),Wp)

a = (a1, . . . , aN ) 7→
1

N

N∑
i=1

δ2N1/pRi,N1/pai

is an isometry.

Proof. Let a, b ∈ [−R,R]N and denote pi(a) = (2N1/pRi,N1/pai) ∈ R2.
Then, for all i ̸= j, one has

∥pi(a)− pj(b)∥ ⩾ 2N1/pR |i− j| ⩾ 2RN1/p.

On the other hand,

∥pi(a)− pi(b)∥ = N1/p |ai − bi| ⩽ 2RN1/p.

Thus, the optimal transport map between ΦR,N (a) and ΦR,N (b) simply maps
the point pi(a) to pi(b), so that

Wp(ΦR,N (a),ΦR,N (b)) =
1

N

N∑
i=1

∥pi(a)− pi(b)∥p

=
1

N

N∑
i=1

(N1/p |ai − bi|)p

= ∥a− b∥pp □

Proof of Theorem 46. Assume that (Pp(R2),Wp) can be embedded into a
Hilbert space. Then there exists two functions ρ± with limt→+∞ ρ−(t) = +∞
and for any �nite subset S of Pp(R2), there exists a map fS : S → ℓ2 such
that

∀µ, ν ∈ S, ρ−(Wp(µ, ν)) ⩽ ∥fS(µ)− fS(ν)∥ ⩽ ρ+(Wp(µ, ν)). (8.32)

We now prove using the converse of Theorem 47 that this would imply
that ℓp can be coarsely embedded into a Hilbert space, which is known to be
false [22]. Let A be a �nite subset of ℓp. Then, there exists N > 0 such that

∀a ∈ A,

(
+∞∑

i=N+1

|ai|p
)1/p

⩽
1

2
.

We let R = maxa∈A ∥a∥∞ and we consider ΠA : A→ [−R,R]N obtained by
keeping only the �rst N coordinates of a sequence, i.e. ΠA(a) = (ai)1⩽i⩽N .
Then,

∀a, b ∈ A, ∥a− b∥p − 1 ⩽ ∥ΠA(a)−ΠA(b)∥ ⩽ ∥a− b∥p .

Thus, denoting S = ΦR,N (ΠA(A)) and fA = fS ◦ ΦR,N ◦ ΠA, we get for all
a, b ∈ A, using (8.32) and Lemma 48,

∥fA(a)− fA(b)∥ ⩽ ρ+(Wp(ΦR,N ◦ΠA(a),ΦR,N ◦ΠA(a)))
= ρ+(∥ΠA(a)−ΠA(b)∥)
⩽ ρ+(∥a− b∥p).
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Similarly, introducing ρ̃−(r) = max(ρ−(r)− 1, 0) we get

∥fA(a)− fA(b)∥ ⩾ ρ̃−(∥a− b∥p).

We can use Theorem 47 to conclude that ℓp can be coarsely embedded into
a Hilbert space, contradicting p > 2. □

Below, we report a more di�cult negative result from Andoni, Naor and
Neiman [4, Theorem 7]. In particular, this result shows that it is not possible
construct a bi-Lipschitz or bi-Hölder embedding of (P2(Rd),W2), d ⩾ 3, into
any Hilbert or Lp space.

Theorem 49 (Andoni, Naor, Neiman). For every p > 1, the space
(Pp(R3),Wp) does not admit a coarse embedding into any Banach space of
nontrivial type.

8.2. Embedding via slicing. Theorems 46 and 49 show that it is impos-
sible to coarsely embed Wasserstein spaces into a Hilbert space when d ⩾ 3
and p = 2 or d ⩾ 2 and p > 2. In the case d = 1, the map µ 7→ Tµ (quantile
function) is an (Pp(R),Wp) into the space Lp([0, 1]).

An natural idea, initially proposed by Marc Bernot, is to de�ne an easy
to compute analogues of the Wasserstein distance in dimension d > 1 using
averages of 1D Wasserstein distances. This idea was �rst exploited in a joint
work between Marc Bernot, Julie Delon, Gabriel Peyré and Julien Rabin
in the context of texture generation [33]. We also refer to the PhD theses
of Nicolas Bonnotte [11] and Kimia Nadjahi [28], which provide the most
detailed theoretical study of these distances.

De�nition 25 (Sliced Wasserstein). Given a direction θ in the unit sphere
Sd−1, we note Pθ(x) = ⟨x|θ⟩ the projection of x on the line spanned by θ.
The p-sliced Wasserstein distance between two measures µ, ν ∈ P(Rd) are
then de�ned by averaging 1D Wasserstein distances:

SWp
p(µ, ν) =

∫
Wp

p(Pθ#µ, Pθ#ν)dσ(θ),

where σ is the uniform probability measure over the unit sphere Sd−1.

Proposition 50. The sliced Wasserstein distance SWp enjoys the following
properties:

(i) SWp is indeed a distance on Pp(Rd); in particular, SWp(µ, ν) = 0 if
and only if µ = ν

(ii) SWp is weaker than the Wasserstein distance:

∀µ, ν ∈ Pp(Rd), SWp(µ, ν) ⩽ Wp(µ, ν).

(iii) the topology induced by SWp is stronger than the weak∗ topology
(iv) the map

Φ : Pp(Rd) → Lp(Sd−1 × [0, 1])

µ 7→
[
(θ, r) 7→ TPθ#µ(r)

]
,

where TPθ#µ is the quantile function of Pθ#µ, is an isometric embed-

ding of (Pp(Rd), SWp) into the Banach space Lp(Sd−1 × [0, 1]).



42 OPTIMAL TRANSPORT

We refer to [11, Proposition 5.1.2 and 5.1.3] for a detailed proof of some
of these properties.

Proof. (i) We note that for any θ ∈ Sd−1 and k ∈ R,

⟨µ|ei⟨kθ|·⟩⟩ =
∫
Rd
eikPθ(x)dx =

∫
R
eiktdPθ#µ(t) = ⟨Pθ#µ|eik·⟩.

where we used the change of variable t = Pθ(x). If SWp(µ, ν) = 0, then for
all θ, Pθ#µ = Pθ#ν, so that by the above computation the Fourier transform
of µ, ν agree. This implies that µ = ν.

(ii) The upper bound of SWp in terms of Wp is obtained by remarking
that if γ ∈ Γ(µ, ν), then (Pθ, Pθ)#γ belongs to Γ(Pθ#µ, Pθ#ν). (iii) This is a
consequence of the Cramér-Wold theorem and the fact that Wp topologizes
weak convergence on Pp(R). □

From the last point of the previous proposition, and form the Theorem 49,
we deduce that the sliced Wasserstein distance SWp cannot be coarsely

equivalent to the Wasserstein distance Wp on Pp(Rd) when d ⩾ 3 and p > 1.
However, Bonotte [11, Theorem 5.1.5] was still able to prove that SWp and
Wp are bi-Hölder equivalent to each other when the probability measures
are on a �xed compact set.

Theorem 51 (Bonotte). Let K be a compact subset of Rd with diam(K) ⩽
R. Then for all p ⩾ 1, there exists constants Cd,p,R > 0 such that

∀µ, ν ∈ P(K), SWp(µ, ν) ⩽ Wp(µ, ν) ⩽ Cd,p,R SWp(µ, ν)
1

p(d+1) .

Remark 23 (Non-convex image). The image of Pp(Rd) under the embedding
Φ described above is not necessarily a convex subset of Lp(Sd−1× [0, 1]) (this
is discussed in detail in [33]). This complicates many tasks that one could
wish to accomplish using this embedding, e.g. de�ning a notion of barycenter
between measures. In order to de�ne the barycenter between µ1, . . . , µN with
weights α1, . . . , αN > 0, one could start by taking a weighted average of the
images Φ(µi),

1∑
i αi

N∑
i=1

αiΦ(µi).

However, this average might not belong to the range of Φ, so that we may
not be able to take its inverse image.

8.3. �Linearization� of the quadratic Wasserstein distance. We �x
a supported probability density ρ ∈ Pac(Rd), supported over a compact
convex set X and bounded from above and below positive constants. Given
µ ∈ P2(Rd), we call Brenier map Tρ→µ the quadratic optimal transport map
between ρ and µ. In practice, since ρ is �xed, we will often denote Tµ the
Brenier map.

Remark 24 (Relation to quantile function). Note that in dimension 1, if ρ
is the Lebesgue measure on [0, 1], the map Tρ→µ coincides with the quantile
function. In fact, maps of the form Tρ→µ have been suggested as a analogue
of the quantile function in [15].
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Proposition 52. The mapping µ 7→ Tµ enjoys the following properties:

(i) µ 7→ Tµ is injective;
(ii) µ 7→ Tµ is reverse-Lipschitz:

∀µ, ν ∈ P(Y ), W2(µ, ν) ⩽ ∥Tµ − Tν∥L2(ρ,Rd). (8.33)

(iii) µ 7→ Tµ is continuous.

(iv) the image of µ 7→ Tµ is a convex subset of L2(ρ,Rd).

We note that the arguments used to prove the general continuity result
(iii) are non-quantitative.

Proof. (i) The injectivity comes from the fact that µ = Tµ#ρ.
(ii) If we denote γ := (Tµ, Tν)#ρ, then γ ∈ Π(µ, ν). The change of variable
formula gives

W2
2(µ, ν)⩽

∫
Y×Y

∥y − y′∥22dγ(y, y′)

=

∫
X
∥Tµ(x)− Tν(x)∥22ρ(x)dx = ∥Tµ − Tν∥2L2(ρ).

(iii) If a sequence of probability measures (µn)n converges to some µ in
(P2(Rd),W2), then Tµn converges to Tµ in L2(ρ,Rd). This continuity prop-
erty is for instance implied by Corollary 5.23 in [43], together with the dom-
inated convergence theorem. □

These properties of the map µ 7→ Tµ motivated its use to embed the metric

space (P2(Rd),W2) into the Hilbert space L2(ρ,Rd). This approach is often
referred to as the Linearized Optimal Transport (LOT) [45] framework and
has shown great results in applications to image processing [45, 24, 5, 13, 31,
23].

Remark 25 (Convex image). A practical bene�t of the embedding is to enable
the use of the classical Hilbertian statistical toolbox on families of probability
measures while keeping some features of the Wasserstein geometry. A par-
ticularly nice feature of the embedding µ 7→ Tµ is that its image in L2(ρ,Rd)
is convex, i.e. barycenters of optimal transport maps are optimal transport
maps, and that the inverse image of the embedding is very easy to compute.

Remark 26 (Relation to generalized geodesics). Working with this embed-
ding is equivalent to replacing the Wasserstein distance by the distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) .

We note that the geodesic curves with respect to the distance W2,ρ are called
the generalized geodesics in the book of Ambrosio, Gigli, Savaré [3].

Remark 27 (µ 7→ Tµ as a Riemannian logarithm). The choice of the Brenier
map between a reference measure ρ and a measure µ as an embedding of µ
may also be motivated by the Riemannian interpretation of the Wasserstein
geometry [30, 3]. In this interpretation, the tangent space to P2(Rd) at ρ is
included in L2(ρ,Rd). The Brenier map minus the identity, Tµ − id, can be
regarded as the vector in the tangent space at ρ which supports the Wasser-
stein geodesic from ρ to µ. In the Riemannian language again, the map
µ 7→ Tµ − id would be called a logarithm, i.e. the inverse of the Riemannian
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exponential map: it sends a probability measure µ in the (curved) manifold
P2(Rd) to a vector Tµ − id belonging to the linear space L2(ρ,Rd). This es-
tablishes a connection between the linearized optimal transport framework
idea and similar strategies used to extend statistical inference notions such
as principal component analysis to manifold-valued data.

It is quite natural to expect that the embedding µ 7→ Tµ retains some of
the geometry of the underlying space, or equivalently that the metric W2,ρ is
comparable, in some coarse sense, to the Wasserstein distance (however, not
on the whole space P2(Rd), by Theorem 49!). A �rst question in this direction
is to estimate the Hölder exponent of the map µ 7→ Tµ when restricted to a
suitable family of probability measures.

We �rst note that µ 7→ Tµ cannot be better than 1
2 -Hölder (another ex-

ample of this fact can be found in [21]).

Lemma 53. Let ρ be uniform on the unit disc X ⊆ R2. Then, there is a
curve θ ∈ [0, 2π] → µθ ∈ P(X) and C > 0 such that

∥Tµθ − Tµ0∥L2(ρ) ⩾ CW2(µθ, µ0)
1/2.

Proof. Given θ ∈ R, we denote xθ = (cos θ, sin(θ)) and µθ =
1
2(δxθ + δ−xθ).

Then, the optimal transport map between ρ and µθ is given by

Tµθ(x) =

{
xθ if ⟨x|xθ⟩ ⩾ 0

−xθ if not.
(8.34)

One can easily check that for θ one has W2(µ0, µθ) ⩽ |θ|. For θ > 0 we set

Dθ = {x ∈ R2 | ⟨x|x0⟩ ⩾ 0 and ⟨x|xθ⟩ ⩽ 0}. (8.35)

Then, on Dθ, Tµθ ≡ x−θ and Tµ0 ≡ x0, giving

∥Tµθ − Tµ0∥
2
L2(ρ) ⩾

∫
Dθ

∥x−θ − x0∥2 dx = |Dθ| ∥x−θ − x0∥2 . (8.36)

Moreover, if |θ| ⩽ π
2 one has ∥x−θ − x0∥2 ⩾ 2. This gives

∥Tµθ − Tµ0∥
2
L2(ρ) ⩾ 2 |Dθ| ⩾

|θ|
π
. □

9. Stability of quadratic optimal transport maps

We are interested in establishing quantitative continuity estimates for the
map µ ∈ P(Y ) 7→ Tµ, where Tµ is the optimal transport map between a

reference probability density ρ on Rd and µ, and where Y is a (�xed) compact
subset of Rd. We will rely on the following assumptions and notations:

De�nition 26. We �x a supported probability density ρ ∈ Pac(Rd), sup-
ported over a compact convex set X and bounded from above and below
positive constants. Given µ ∈ P2(Rd), we call

• Brenier map Tµ the optimal transport map between ρ and µ;
• Brenier potential the unique lower semi-continuous convex function
φρ→µ ∈ L2(ρ) such that Tµ = ∇φµ and

∫
X φµdρ = 0;

• dual potential the convex conjugate of φµ, denoted ψµ = φ∗
µ.
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Our main tool to prove these continuity estimates will be Kantorovich
duality with respect to the cost c(x, y) = −⟨x|y⟩. More precisely we will rely
on the semi-dual problem

min
ψ∈C0(Y )

K(ψ) + ⟨ψ|µ⟩. (9.37)

where K is the Kantorovich functional

K(ψ) =

∫
ψ∗dρ.

We have already established (see Proposition 17) that ∇K(ψ) = −∇ψ∗
#ρ, so

that the optimality condition for the problem (9.37) is

∇ψ∗
µ#ρ = µ.

If ψµ satis�es this condition, then φµ = ψ∗
µ is the Brenier potential and

Tµ = ∇φµ is the Brenier map. Adding a constant from φµ if necessary, we
may assume that ⟨φµ|ρ⟩ = 0; the same constant is then substracted from ψµ
and (φµ, ψµ, Tµ) are then uniquely de�ned.

9.1. Stability near a regular con�guration. We state a �rst positive
result, which is a slight variant of a known stability result due to Ambrosio
and reported in [21].

Theorem 54. Let µ, ν ∈ P(Y ) and assume that Tµ is K-Lipschitz. Then,

∥Tµ − Tν∥L2(ρ) ⩽ 2
√
MXKW1(µ, ν)

1/2, (9.38)

where MX = maxx∈X ∥x∥.

We deduce this theorem from the following elementary lemma, which can
be regarded as a strong concavity estimate for the Kantorovich functional
K, as it can be rephrased as

⟨ψν − ψµ|K(ψν)−K(ψµ)⟩ ⩾
1

2K
∥Tµ − Tν∥2L2(ρ) .

Lemma 55. Under the assumptions of Theorem 54,

∥Tµ − Tν∥2L2(ρ) ⩽ 2K

∫
Y
(ψν − ψµ)d(µ− ν) (9.39)

Proof. From convex analysis, we know that the map Tµ = ∇φµ is K-Lipschitz
if and only if the dual ψµ is

1
K -strongly convex. We denote A =

∫
Y ψνd(µ−ν)

and B =
∫
Y ψµd(ν−µ). Using that (∇φµ)#ρ = µ and (∇φν)#ρ = ν, we get

A =

∫
X
(ψν(∇φµ)− ψν(∇φν))dρ

=

∫
X
(ψν(∇ψ∗

µ)− ψν(∇ψ∗
ν))dρ (9.40)

We now use the inequality ψν(y) − ψν(z) ⩾ ⟨y − z|v⟩, which holds for all v
in the subdi�erential ∂ψν(z). The convex functions ψν , ψµ are di�erentiable
ρ-almost everywhere. Taking z = ∇ψ∗

ν(x) and y = ∇ψ∗
µ(x), and using

x ∈ ∂ψν(z), we obtain

A ⩾
∫
X
⟨id,∇ψ∗

µ −∇ψ∗
ν⟩dρ (9.41)
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Using the strong convexity of ψµ, we get a similar lower bound on B, with
an extra quadratic term

B =

∫
X
(ψµ(∇ψ∗

ν)− ψµ(∇ψ∗
µ))dρ

⩾
∫
X

(
⟨id,∇ψ∗

ν −∇ψ∗
µ⟩+

1

2K
∥∇ψ∗

ν −∇ψ∗
µ∥22
)
dρ. (9.42)

Summing up the lower bounds on A and B, we get:∫
Y
(ψν − ψµ)d(µ− ν) ⩾

1

2K

∫
X
∥∇ψ∗

ν −∇ψ∗
µ∥22dρ

=
1

2K
∥Tν − Tµ∥2L2(ρ). □

Proof of Theorem 54. Being de�ned as the convex conjugate of φν : X → R,
we know that ψν is Lipschitz with constant ⩽ MX . Combining this with
Lemma 55,

∥Tµ − Tν∥2L2(ρ) ⩽ 2K

∫
Y
(ψν − ψµ)d(µ− ν)

⩽ 2K max
Lip(f)⩽MX

∫
Y
fd(µ− ν)

= 2KMX max
Lip(f)⩽1

∫
Y
fd(µ− ν)

= 2KMX W1(µ, ν), (9.43)

where we used Kantorovich-Rubinstein's theorem to get the last equality. □

9.2. Stability of potentials for entropy-regularized quadratic opti-

mal transport. In this section, we �x a reference probability measure σ in
P(Y ), with support equal to Y . Given ε > 0, and ψ ∈ C0(Y ), we de�ne the
ε-regularized convex conjugate as

ψ∗,ε(x) = ε log

(∫
Y
e

⟨x|y⟩−ψ(y)
ε

dσ(y)

)
,

and the ε-regularized Kantorovich as

Kε(ψ) =

∫
X
ψ∗,εdρ.

Lemma 56 (Convergence as ε→ 0). For any ψ ∈ C0(Y ),

• ψ∗,ε converges pointwise to ψ as ε→ 0;
• limεKε(ψ) = K(ψ) ;

We now look at the gradient of Kε. To each potential ψ ∈ C0(Y ) and any
point x in the source domain X, we will associate a probability density µ̂xε [ψ]
(with respect to σ) and the corresponding probability measure µxε [ψ] on Y :

µ̂xε [ψ] =
e

⟨x|y⟩−ψ(y)
ε∫

Y e
⟨x|z⟩−ψ(z)

ε dσ(z)

µxε [ψ] = µ̂xε [ψ]dσ
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We also de�ne

µε[ψ] =

∫
X
µxε [ψ]dρ(x).

Remark 28 (Limit as ε → 0). Note that if ∇ψ∗ is di�erentiable at x, then
the maximum of y 7→ ⟨x|y⟩ − ψ(y) is attained at the point ∇ψ∗(x). If this
is the case, then

lim
ε→0

µxε [ψ] = δ∇ψ∗(x).

Thus, at least formally, µε[ψ] is the analogue of

∇ψ∗
#ρ =

∫
δ∇ψ∗(x)dρ(x).

Lemma 57 (Gradient of Kε). The smoothed Kantorovich functional Kε is
di�erentiable at any ψ ∈ C0(Y ) with

∇Kε(ψ) = −µε[ψ],

i.e. for all v ∈ C0(Y ),

d

dt
Kε(ψ + tv) = −⟨µε[ψ]|v⟩ = −

∫
X
⟨µ̂xε [ψ]|v⟩dρ(x).

Moreover,

lim
ε

∇Kε(ψ) = ∇K(ψ)

Proof. Let ψt = ψ + tv. Then, by de�nition of µxε [ψ] we have

d

dt
ψ∗,ε
t (x) = ε

d

dt
log

(∫
Y
e

⟨x|y⟩−ψt(y)
ε dσ(y)

)

= ε

∫
Y

d
dte

⟨x|y⟩−ψt(y)
ε dσ(y)∫

Y e
⟨x|y⟩−ψt(y)

ε dσ(y)

= −⟨v|µxε [ψ]⟩

(9.44)

We conclude by di�erentiating under the integral de�ning Kε(ψ) that

d

dt
Kε(ψ + tv) = ε

∫
X

d

dt
ψ∗,ε
t (x)dρ(x).

= −
∫
X
⟨v|µxε [ψ]⟩dρ(x).

= −⟨v|µε⟩. □

We consider the set of continuous functions with bounded oscillation,
where osc(ψ) = supψ − inf ψ:

C0
R(Y ) = {ψ ∈ C0(Y ) | osc(ψ) ⩽ R}.

Theorem 58. The functional Kε is strongly convex on C0
R(Y ). More pre-

cisely, if ψ0, ψ1 ∈ C0
R(Y ), then

⟨∇Kε(ψ1)−∇Kε(ψ0)|ψ1 − ψ0⟩ ⩾ cVarσ(ψ1 − ψ0).

where cε =
1
εe

− 2RXRY +R

ε and RZ = maxz∈Z ∥z∥.
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Remark 29 (Stability of dual potentials). In particular, if ψ0, ψ1 are Lipschitz
with constant K, then

Varσ(ψ1 − ψ0) ⩽
1

cε
⟨µε[ψ1]− µε[ψ0]|ψ1 − ψ0⟩

⩽
2

cε
KW1(µε[ψ1], µε[ψ0]),

where we used Kantorovich-Rubinstein's theorem (Theorem 34) to get the
second inequality. Note that as ε → 0, cε tends to in�nity, so that this
inequality does not translate into a stability inequality for the unregularized
case ε = 0. In a similar spirit (but using di�erent techniques, involving the
so-called Hilbert metric), Giulia Luise et al [25, Theorem C.4] proves an
estimate of the form

osc(ψ1 − ψ0) ⩽ cε ∥µε[ψ0]− µε[ψ1]∥TV ,

with limε→0 cε = +∞. Note that the dependence is Lipschitz in their case,
which is important for some applications.

Given ψ ∈ C0(Y ) and a direction v ∈ C0(Y ), we de�ne

⟨D2Kε(ψ)v|v⟩ = lim
t→0

⟨∇Kε(ψ + tv)−∇Kε(ψ)|v⟩.

Lemma 59. ⟨D2Kε(ψ)v|v⟩ = 1
ε

∫
X Varµxε [ψ](v)dρ(x).

Proof. Let ψt = ψ + tv. By integration under the integral, we have

d

dt
⟨∇Kε(ψt)|v⟩ = −

∫
X×Y

⟨v| d
dt
µxε [ψ]⟩dρ(x).

Let us compute the derivative of the density µ̂xε [ψ]:

d

dt
µ̂xε [ψt](y)|t=0 =

d

dt

e
⟨x|y⟩−ψt(y)

ε∫
Y e

⟨x|z⟩−ψt(z)
ε dσ(z)

=
−v(y)

ε e
⟨x|y⟩−ψt(y)

ε

∫
Y e

⟨x|z⟩−ψt(z)
ε dσ(z) + 1

εe
⟨x|y⟩−ψt(y)

ε

∫
Y e

⟨x|z⟩−ψt(z)
ε v(z)dσ(z)

(
∫
Y e

⟨x|ez⟩−ψt(z)
ε dσ(z))2

= −v(y)
ε
µ̂xε [ψ](y) +

1

ε
µ̂xε [ψ](y)⟨µxε |ψ⟩

Thus,

⟨D2Kε(ψ)v|v⟩ =
1

ε

∫
X
⟨v2|µxε [ψ]⟩ − (⟨v|µxε [ψ]⟩)2dρ(x)

=
1

ε

∫
X
Varµxε [ψ](v)dρ(x). □

Proof of Theorem 58. Let v = ψ1−ψ0 and ψt = ψ0+tv. By Taylor's formula,
we have

⟨∇Kε(ψ1)−∇Kε(ψ0)|ψ1 − ψ0⟩ = ⟨∇Kε(ψ1)−∇Kε(ψ0)|v⟩

=

∫ 1

0
⟨D2Kε(ψt)v|v⟩dt

⩾
1

ε

∫ 1

0

∫
X
Varµxε [ψt](v)dρ(x)dt
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Recall that µxε [ψt] has density µ̂
x
ε [ψt] with respect to σ:

µ̂xε [ψt](y) =
e

⟨x|y⟩−ψt(y)
ε∫

Y e
⟨x|z⟩−ψt(z)

ε dσ(z)
⩾

e
⟨x|y⟩−supψt

ε∫
Y e

⟨x|z⟩−inf ψt
ε dσ(z)

⩾
e

−RXRY −supψt
ε

e
RXRY −inf ψ

ε

,

where RX = maxx∈X ∥x∥, RY = maxy∈Y ∥y∥ with respect to σ, so that with

c = e−
2RXRY +R

ε we get

µ̂xε [ψt](y) ⩾ cσ.

From this, we deduce that Varγ̂xε (v) ⩾ cVarσ(v), which allows to conclude.
□

10. Hölder stability of dual potentials

In this section, we show how to prove Hölder estimates for the dual poten-
tials. The proof is taken from [17], and relies on strong convexity estimates
for Kε, with a constant that does not degrade as ε→ 0. The main idea is to
deduce strong convexity of Kε from mere convexity of

Iε(ψ) = log

(∫
X
e−ψ

∗,ε
dx

)
.

Given ψ ∈ C0(Y ), we will denote ρε[ψ] the Gibbs measure of ψ∗,ε, i.e.

ρε[ψ](x) =
e−ψ

∗,ε(x)∫
X e

−ψ∗,ε(z)dz
.

Proposition 60. Iε is concave and

∇Iε(ψ) =
∫
X
µxε [ψ]ρε[ψ](x)dx,

⟨D2Iε(ψ)v|v⟩ = −
(
1

ε
+ 1

)∫
X
Varµxε [ψt](v)ρε[ψt](x)dx+VarµIε [ψt](v),

where µIε[ψ] =
∫
µxε [ψ]ρε[ψ](x)dx.

Proof. Let ψt = ψ + tv. Then,

d

dt
eIε(ψt) =

d

dt

∫
X
e−ψ

∗,ε
t dx

=

∫
X

d

dt
e−ψ

∗,ε
t dx

= −
∫
X

(
d

dt
ψ∗,ε
t (x)

)
e−ψ

∗,ε
t dx

= −
∫
X

(
d

dt
ψ∗,ε
t (x)

)
e−ψ

∗,ε
t dx

=

∫
X
⟨v|µxε [ψt]⟩e−ψ

∗,ε
t dx

Thus,

∇Iε(ψt) =
1

Iε(ψt)

∫
X
µxε [ψt]e

−ψ∗,ε
t dx =

∫
X
µxε [ψt]ρε[ψt]dx
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We now compute the second derivative:

⟨D2Iε(ψt)v|v⟩ =
d

dt
⟨∇Iε(ψt)|v⟩

=
d

dt

∫
X

∫
Y
v(y)µ̂xε [ψt](y)ρε[ψt](x)dσ(y)dx

=

∫
X

∫
Y
v(y)

[(
d

dt
µ̂xε [ψt](y)

)
ρε[ψt](x) + µ̂xε [ψt](y)

(
d

dt
ρε[ψt](x)

)]
dσ(y)dx

=

∫
X

∫
Y
v(y)

(
d

dt
µ̂xε [ψt](y)

)
ρε[ψt](x)dσ(y)dx

+

∫
X

∫
Y
v(y)µ̂xε [ψt](y)

(
d

dt
ρε[ψt](x)

)
dσ(y)dx

Following the computations already performed for Kε, we can see that the
�rst term of the sum is equal to

−1

ε

∫
X
Varµxε [ψt](v)dρε[ψ].

We turn to the second term. Let us �rst di�erentiate ρε[ψt](x) with respect
to t:

d

dt
ρε[ψt](x) =

d

dt

e−ψ
∗,ε
t (x)∫

X e
−ψ∗,ε

t (z)dz

=
d
dte

−ψ∗,ε
t (x)∫

X e
−ψ∗,ε

t (z)dz
−
e−ψ

∗,ε
t (x) d

dt

∫
X e

−ψ∗,ε
t (z)dz

(
∫
X e

−ψ∗,ε(z)dz)2

= −
(
d
dtψ

∗,ε
t (x)

)
e−ψ

∗,ε
t (x)∫

X e
−ψ∗,ε

t (z)dz
+
e−ψ

∗,ε
t (x)

∫
X

(
d
dtψ

∗,ε
t (z)

)
e−ψ

∗,ε
t (z)dz

(
∫
X e

−ψ∗,ε(z)dz)2

= ⟨µxε [ψt]|v⟩ρε[ψt](x)− ρε[ψt](x)

∫
X
⟨µzε[ψt]|v⟩ρε[ψt](z)dz

= ⟨µxε [ψt]|v⟩ρε[ψt](x)− ρε[ψt](x)⟨µIε[ψt]|v⟩,

where we used (9.44). Then,∫
X

∫
Y
v(y)µ̂xε [ψt](y)

(
d

dt
ρε[ψt](x)

)
dσ(y)dx

=

∫
X
⟨v|µxε [ψt]⟩

(
⟨µxε [ψt]|v⟩ρε[ψt](x)− ρε[ψt](x)⟨µIε[ψt]|v⟩)

)
dx

=

∫
(⟨v|µxε [ψt]⟩)

2 ρε[ψt](x)dx−
(
⟨µIε[ψt]|v⟩

)2
= Varρε[ψt](x 7→ ⟨v|µxε [ψt]⟩)

= VarµIε [ψt](v)−
∫
X
Varµxε [ψt](v)ρε[ψt](x)dx,

where we used a variance decomposition formula to get the last line.
Concavity comes from the Prékopa-Leindler inequality □
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Let ct = ⟨v|µε[ψt]⟩ and c =
∫ 1
0 ctdt. Then,

Varρ(ψ
∗,ε
1 − ψ∗,ε

0 ) ⩽
∫
X
(ψ∗,ε

1 (x)− ψ∗,ε
0 (x)− c)2dρ(x)

⩽
∫
X

∣∣∣∣∫ 1

0

d

dt
ψ∗,ε
t (x)− ct

∣∣∣∣2 dρ(x)
=

∫ 1

0

∫
X
|⟨µxε [ψt]− ct|v⟩|2 dρ(x)

=

∫ 1

0

∫
X
Varµε[ψt](v)dt
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