Monotone discretization of the second boundary value problem for the Monge-Ampère equation Discrétisation monotone du second problème aux limites pour l'équation de Monge-Ampère

<u>Guillaume Bonnet</u>¹ Jean-Marie Mirebeau²

¹SISSA

²CNRS et ENS Paris-Saclay, Université Paris-Saclay

Journées du projet ANR MAGA, Autrans, 2022

Setting

Optimal transport problem*:

$$\inf_{T: X \to Y, T_{\#}\mu=\nu} \int_X c(x, T(x)) d\mu(x).$$

We assume that:

- The nonempty open sets X and Y are convex and bounded.
- The measure μ has a bounded density $f: \overline{X} \to \mathbb{R}_+$.
 - (allows measures with non-convex / non-connected support)
- The measure ν has a positive, Lipschitz continuous density $g \colon \overline{Y} \to \mathbb{R}^*_+$.

(implies convex support)

• (For now) c is the quadratic cost function $(x, y) \mapsto |x - y|^2$. *The constraint $T_{\#}\mu = \nu$ means that $\mu(T^{-1}(E)) = \nu(E)$, for any Borel set $E \subset Y$. Measures μ and ν must have the same mass. The optimal transport map is of the form $T = \nabla u$ where $u: X \to \mathbb{R}$ is solution to the *second boundary value problem* for the Monge-Ampère equation:

$$\begin{cases} \det \nabla^2 u(x) = f(x)/g(\nabla u(x)) & \text{in } X, \\ \nabla^2 u(x) \succeq 0 & \text{in } X, \\ \nabla u(X) \subset \overline{Y}. \end{cases}$$

- $\nabla^2 u(x) \succeq 0$ ($\nabla^2 u(x)$ is positive semidefinite) is a convexity constraint.
- $\nabla u(X) \subset \overline{Y}$ is a boundary condition (by convexity, equivalent to $\nabla u(\partial X) \subset \overline{Y}$).

How to discretize the Monge-Ampère problem in order to solve it numerically?

- **1** Discretization of the Monge-Ampère equation.
- 2 Handling of the optimal transport boundary condition.
- 3 Numerical results.

For simplicity, we consider the simple Monge-Ampère equation:

$$\det \nabla^2 u(x) = f(x) \quad \text{in } X.$$

- The left-hand side is monotone with respect to ∇²u(x), for the Loewner order, provided that ∇²u(x) ≥ 0.
- Thus the Monge-Ampère equation belongs to the class of degenerate elliptic equations.
- Monotone schemes is a category of numerical schemes that is well-suited for the discretization of degenerate elliptic equations.

How to discretize det $\nabla^2 u(x)$ in a monotone way?

Reformulation

- Denote by S⁺_d (resp. S⁺⁺_d) the set of symmetric positive semidefinite (resp. definite) matrices of size d.
- Then for $M \in \mathcal{S}_d^+$,

$$d(\det M)^{1/d} = \inf_{\mathcal{D}\in\mathcal{S}_d^{++},\,\det\mathcal{D}=1} \mathsf{Tr}(\mathcal{D}M)$$

- (Justified using the inequality of arithmetic and geometric means on eigenvalues of *DM*.)
- Successive reformulations of the Monge-Ampère equation:

$$df(x)^{1/d} - d(\det \nabla^2 u(x))^{1/d} = 0$$
 in X,

$$\sup_{\mathcal{D}\in\mathcal{S}_d^{++},\,\det\mathcal{D}=1}\left(df(x)^{1/d}-\mathsf{Tr}(\mathcal{D}\nabla^2 u(x))\right)=0\qquad\text{in }X,$$

 $\max_{\mathcal{D}\in \mathcal{S}_d^+, \operatorname{Tr}(\mathcal{D})=1} \left(d(f(x)\det \mathcal{D})^{1/d} - \operatorname{Tr}(\mathcal{D}\nabla^2 u(x)) \right) = 0 \quad \text{in } X.$

$$\max_{\mathcal{D}\in \mathcal{S}^+_d,\,\operatorname{Tr}(\mathcal{D})=1}\left(d(f(x)\det\mathcal{D})^{1/d}-\operatorname{Tr}(\mathcal{D}\nabla^2 u(x))\right)=0\quad\text{in }X.$$

- Reformulation first used numerically in Feng, Jensen, 2017.
- We could have stopped earlier in the reformulation process (maximizing over $\mathcal{D} \in \mathcal{S}_d^{++}$ satisfying det $\mathcal{D} = 1$ instead of $Tr(\mathcal{D}) = 1$).
 - This would have yielded (some variant of) the MA-LBR scheme, see Benamou, Collino, Mirebeau, 2016.
- Benefits of the Feng and Jensen reformulation:
 - Maximum of a concave function over a compact set.
 - This reformulation enforces the convexity of its solutions.
 - No need to discretize the convexity constraint separately.
 - No need of damping when solving the resulting scheme with the Newton method, as opposed to the MA-LBR scheme.

Finite difference discretization in dimension two

For any $\mathcal{D} \in \mathcal{S}_2^{++}$, we have to discretize the second-order term $\operatorname{Tr}(\mathcal{D}\nabla^2 u(x))$ in a monotone way. Selling's decomposition (a tool from low-dimensional lattice geometry) is of the form

$$\mathcal{D} = \sum_{i=1}^{3} \lambda_i e_i e_i^{\top},$$

with weights $\lambda_i \geq 0$ and offsets $e_i \in \mathbb{Z}^d$ (not the eigendecomposition).

Then, with consistency at the order two,

$$\operatorname{Tr}(\mathcal{D}\nabla^2 u(x)) \approx \Delta_h^{\mathcal{D}} u(x),$$

where

$$\Delta_h^{\mathcal{D}}u(x):=\sum_{i=1}^3\lambda_i\frac{u(x+he_i)+u(x-he_i)-2u(x)}{h^2}.$$

Selling's decomposition — illustration

The set
$$\{\mathcal{D} \in \mathcal{S}_2^+ \mid \mathsf{Tr}(\mathcal{D}) = 1\}$$
 is a disk:
 $\{\mathcal{D} \in \mathcal{S}_2^+ \mid \mathsf{Tr}(\mathcal{D}) = 1\} = \left\{ \frac{1}{2} \begin{pmatrix} 1+\rho_1 & \rho_2 \\ \rho_2 & 1-\rho_1 \end{pmatrix} \mid |\rho| \le 1 \right\}.$

Offsets of Selling's decomposition are constant on each cell of some infinite triangulation of this disk (but weights vary on those cells).

Matrices

On a Cartesian grid $\mathcal{G}_h \subset X \cap h\mathbb{Z}^2$, $\mathcal{G}_h \approx X \cap h\mathbb{Z}^2$, we let

$$(F_h u)[x] :\approx \max_{\mathcal{D} \in \mathcal{S}_2^+, \operatorname{Tr}(\mathcal{D}=1)} \left(2(f(x) \det \mathcal{D})^{1/2} - \Delta_h^{\mathcal{D}} u(x) \right).$$

Not an exact definition since we need to explain how to compute or approximate the maximum. Our strategy:

- Keep only a finite number of cells in the triangulation of the parameter set.
- Use a closed-form formula for the maximum on each of those cells (B., Mirebeau, 2021: this closed-form formula exists and is numerically exploitable).

Numerically more efficient than the alternative (discretizing the parameter set).

General form of the Monge-Ampère equation:

$$\det \left(
abla^2 u(x) - A(x,
abla u(x))
ight) = B(x,
abla u(x)) \quad ext{in } X,$$

with admissibility constraint

$$\nabla^2 u(x) \succeq A(x, \nabla u(x))$$
 in X.

Feng and Jensen reformulation:

$$\max_{\mathcal{D}\in\mathcal{S}_{2}^{+},\,\operatorname{Tr}(\mathcal{D})=1}\left(d(B(x,\nabla u(x))\det\mathcal{D})^{1/d}+\operatorname{Tr}(\mathcal{D}A(x,\nabla u(x)))\right)\\-\operatorname{Tr}(\mathcal{D}\nabla^{2}u(x))\right)=0\quad\text{in }X.$$

In this setting, we use a Lax-Friedrichs approximation of $\nabla u(x)$.

In the smooth case, we assume that the Monge-Ampère problem has a solution of class C^2 with a uniformly admissible Hessian.

	General case	Smooth	Smooth case,
		case	Lax-Friedrichs
Consistency			
error	$O(h^{2/3})$	$O(h^2)$	O(h)
Numerical			
cost	$O(h^{-8/3}\log(1+h^{-1}))$	$O(h^{-2})$	$O(h^{-2})$
Numerical			
cost			
(discretized	$O(h^{-10/3})$	$O(h^{-6})$	$O(h^{-4})$
maximum)			

The numerical cost with the discretized maximum is to retain the same order of consistency.

- **1** Discretization of the Monge-Ampère equation.
- 2 Handling of the optimal transport boundary condition.
- 3 Numerical results.

For simplicity, let us consider the one-dimensional Monge-Ampère problem, with X = Y = (-1, 1) and $g \equiv 1$:

$$\begin{cases} u''(x) = f(x) & \text{ in } (-1,1), \\ u'(x) \in [-1,1], & \forall x \in (-1,1). \end{cases}$$

Example: solution with $f = 2\chi_{(-\frac{1}{2},\frac{1}{2})}$:

The optimal transport boundary condition

$$u'(x)\in [-1,1],\quad \forall x\in (-1,1),$$

may be reformulated in the inequality form

$$|u'(x)| - 1 \le 0$$
 in $(-1, 1)$.

- (Generalizes to higher dimensions using the signed distance function to ∂Y.)
- We have both an equality and an inequality on the whole domain (-1,1) ⇒ How to turn them into a single equation?

Reformulation suitable for discretization (2/2)

- Following Froese, 2019, we consider the maximum between the Monge-Ampère operator and the optimal transport boundary condition operator.
- Need to add a condition on $\partial(-1,1)$.
 - Appropriate choice: Dirichlet boundary condition $u(-1) = u(1) = +\infty$, in the *weak sense* of viscosity solutions.
 - (Induces no boundary layer.)
- Resulting system:

$$\begin{cases} \max \{f - u'', |u'| - 1\} = 0 & \text{in } (-1, 1), \\ u(-1) = u(1) = +\infty. \end{cases}$$

Justification of the reformulation

- Froese, 2019: all subsolutions to the reformulated problem are solutions to the original Monge-Ampère problem.
- Particularly strong result (concerns subsolutions, not only solutions).
- Justification:
 - If max $\{f u'', |u'| 1\} \le 0$, then both $u'' \ge f$ and $|u'| \le 1$.
 - By a competition argument between both inequalities, deduce that actually u'' = f in (-1, 1).

What about supersolutions?

Case of supersolutions

- If max $\{f u'', |u'| 1\} \ge 0$, then either $u'' \le f$ or $|u'| \ge 1$.
- Thanks to the appropriate choice of the boundary condition $u(-1) = u(1) = +\infty$ in the viscosity sense, one can show that supersolutions also satisfy $u'(-1) \le -1$ and $u'(1) \ge 1$.
- Pathological example of a supersolution that is not a solution:

Hope: supersolutions are not too dissimilar from solutions.

Slope-limited convex envelope

- We define a slope-limited convex envelope u^{**}_Y of the supersolution u.
 - Supremum of supporting hyperplanes whose slope belong to the target set Y = [-1, 1].
- u_Y^{**} satisfies $(u_Y^{**})'' \leq f$ on the whole domain (-1, 1).

Competition argument

- Remember that $u'(-1) \leq -1$ and $u'(1) \geq 1$.
- One can deduce that $(u_Y^{**})'(-1) \leq -1$ and $(u_Y^{**})'(1) \geq 1$ (actually with equalities).
- By a competition argument with the inequality $(u_Y^{**})'' \leq f$ on (-1, 1), one can show that $(u_Y^{**})'' = f$ on (-1, 1).

 Conclusion: if u is a supersolution to the reformulated Monge-Ampère problem, then u^{**}_Y is a solution to the original problem.

Reformulated system for the Monge-Ampère problem:

$$\begin{cases} \max \{f - u'', |u'| - 1\} = 0 & \text{in } (-1, 1), \\ u(-1) = u(1) = +\infty. \end{cases}$$

- Subsolutions are solutions to the original system.
- Supersolutions may be turned into solutions to the original system.
- B., Mirebeau, 2021: proof for systems associated to optimal transport problems with quadratic cost, in arbitrary dimension and with potentially nonconstant target density g.
 - Need to use the appropriate notions of weak solutions:
 - Viscosity solutions for the reformulated system.
 - Aleksandrov (equivalently Brenier) solutions for the original system.
- The numerical scheme is a discretization of the reformulated system.

Mass balance condition

In order for the systems to be well-posed, one has to assume the mass balance condition

$$\int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} g(y) \, dy$$

(or $\int_{-1}^{1} f(x) dx = 2$ in the particular case $g \equiv 1$).

- Usually, no discrete counterpart to the mass balance condition holds at the discrete level.
- Therefore, a scheme that is a direct discretization of the reformulated system often does not admit solutions.
- How to modify the reformulated system in order to weaken the need for the mass balance condition?

Weakening the need for the mass balance condition

- Approach 1: replace the (weak) Dirichlet boundary condition $u = +\infty$ on ∂X by u = 0 on ∂X .
 - Approach used in Froese, 2019.
 - Theoretical guarantees of existence and convergence of solutions to numerical schemes (for quadratic transport costs).
 - Schemes have to be *underestimating*, numerical artifacts may appear near the boundary.

Approach 2: Add an unknown $\alpha \in \mathbb{R}$ and solve the modified system

$$\begin{cases} \max \{f - u'' + \alpha, |u'| - 1\} = 0 & \text{in } (-1, 1), \\ u(-1) = u(1) = +\infty. \end{cases}$$

- Approach used as a numerical trick in Benamou, Duval, 2019.
- Our contribution: theoretical guarantees for this approach (existence and convergence of solutions to numerical schemes, for quadratic transport costs).

System with the additional unknown:

$$\begin{cases} \max \{f - u'' + \alpha, |u'| - 1\} = 0 & \text{in } (-1, 1), \\ u(-1) = u(1) = +\infty. \end{cases}$$

Properties depending on the sign of α :

$\alpha < 0$	$\alpha = 0$	$\alpha > 0$	
no supersolutions	existence of	no subsolutions	
(many subsolutions)	a solution	(many supersolutions)	

Proof of no sub- / supersolutions: refinement of the competition arguments described previously.

Convergence result

- B., Mirebeau, 2021: under suitable assumptions, solutions (u_h, α_h) to the finite difference scheme converge to (u, 0) where u solves the Monge-Ampère problem.
- Main assumptions: X is strongly convex, Y is convex, f ≥ 0 is bounded and almost everywhere continuous, g is positive and Lipschitz continuous.
- Sketch of proof:
 - **1** Arzelà-Ascoli: (u_h, α_h) converge, up to extraction, to some (u, α) .
 - **2** Barles, Souganidis, 1991: *u* solution to the reformulated problem with additional parameter α .
 - **3** Solutions only exist for $\alpha = 0$, so $\alpha = 0$.
 - 4 *u* solution with $\alpha = 0 \implies u$ subsolution with $\alpha = 0 \implies u$ solution to the original Monge-Ampère problem.
 - **5** Conclude using uniqueness for the original problem.

Existence of solutions

- B., Mirebeau, 2021: under suitable assumptions, there exists a solution (u_h, α_h) to the scheme.
- Proved in a general setting which allows general optimal transport costs (or even non-Monge-Ampère equations).
- Existence of solutions for monotone schemes is usually proved using Perron's method.
- Main difficulty here: the scheme is monotone with respect to u for fixed α, but not monotone with respect to the pair of unknowns (u, α).
- We add to adapt Perron's method to this setting, handling the unknown α separately in the proof.

- **1** Discretization of the Monge-Ampère equation.
- 2 Handling of the optimal transport boundary condition.
- 3 Numerical results.

Application to quadratic optimal transport problems

- Top: source density.
- Middle: results with constant target density.
- Bottom: results with nonconstant target density.

We solve the far field refractor problem in nonimaging optics: given a uniform point light source, what should be the shape of the lens so that a given target image is reconstructed on the screen?

- The screen is assumed to be at infinite distance from the light source.
- This problem reduces to solving a Monge-Ampère equation (in the general form).

Application to nonimaging optics

Target image

Simulation using the appleseed $\widehat{\mbox{\bf R}}$ rendering engine

Shape and curvature of the lens (numerical solution)

Conclusion and perspectives

Conclusion:

- Monotone finite difference scheme for the Monge-Ampère equation of optimal transport.
- In dimension two, closed-form formula for the maximum at the discrete level, which improves the efficiency of the scheme.
- Existence of solutions, and convergence in the setting of quadratic optimal transport.

Perspectives:

- Adaptation of the closed-form formula to other equations (see Bonnans, B., Mirebeau, 2021 for the Pucci equation).
- Convergence for Monge-Ampère problems with non absolutely continuous source measures or with general transport costs.
- Analysis for yet more general equations, for instance det $(\nabla^2 u(x) - A(x, u(x), \nabla u(x))) = B(x, u(x), \nabla u(x)).$

Thank you for your attention.

Monotone schemes

- On a grid G_h, a scheme S_h: ℝ^{G_h} → ℝ^{G_h} is monotone if its residue (S_hu)[x] at point x ∈ G_h is nonincreasing with respect to the values {u(y) | y ∈ G_h, y ≠ x}.
- If the scheme is monotone, then the maximum *u* = max{*u*₁, *u*₂} of two subsolutions *u*₁ and *u*₂ remains a subsolution.

 By a compactness argument, a finite-valued supremum of subsolutions is still a subsolution (if the scheme operator S_h is continuous).

Perron's method

- Perron's method: If the scheme operator S_h is monotone and continuous, and if the pointwise supremum u of all subsolutions is finite-valued, then u is a solution to the scheme.
- Sketch of proof:
 - **1** We already know that *u* is a subsolution.
 - 2 If it is not a solution, then there exists $x \in G_h$ such that $(S_h u)[x] < 0$.
 - 3 Then by perturbation we can build a subsolution \hat{u} such that $\hat{u}(x) > u(x)$.
 - 4 Impossible since *u* is the pointwise supremum of all subsolutions.

Extension to our setting

• Scheme in our setting: $(S_h^{\alpha}u)[x] = 0$ in \mathcal{G}_h , where:

- Unknowns are $u \in \mathbb{R}^{\mathcal{G}_h}$ and $\alpha \in \mathbb{R}$.
- For fixed $\alpha \in \mathbb{R}$, the operator $S_h^{\alpha} \colon \mathbb{R}^{\mathcal{G}_h} \to \mathbb{R}^{\mathcal{G}_h}$ is monotone.
- Perron's method is not directly applicable since:
 - The scheme is not monotone with respect to the pair (u, α) .
 - (Moreover for fixed α, the pointwise supremum of all subsolutions u is everywhere +∞.)
- Definition: a subsolution (u, α) to the scheme is a solution to $(S_h^{\alpha} u)[x] \leq 0$ in \mathcal{G}_h .
- Stability property: there is α_{*} ∈ ℝ such that α ≤ α_{*} for all subsolutions to the scheme.
 - (Remark: similarly, one has $\alpha \leq 0$ for all subsolutions to the continuous problem.)
- Stability + compactness \implies there exists a subsolution (\overline{u}, α) which maximizes α among all subsolutions.

Proof of existence of solutions

- **1** There exists a nonempty set \mathcal{G}_h^* on which $(S_h^{\alpha}\overline{u})[x] = 0$, since otherwise α could be increased.
- 2 Let ũ be the pointwise supremum of u such that (u, α) is subsolution and u = ū on G^{*}_h (1).
- **3** By Perron's argument, one has $(S_h^{\alpha} \tilde{u})[x] = 0$ on $\mathcal{G}_h \setminus \mathcal{G}_h^*$.
- 4 One of the following holds:
 - $(S_h^{\alpha}\tilde{u})[x] = 0$ on \mathcal{G}_h^* . Then (\tilde{u}, α) is a solution.
 - There exists x ∈ G^{*}_h such that (S^α_h ũ)[x] < 0. Then one can build a perturbation û of ũ (2) for which the cardinal of G^{*}_h is reduced upon taking ū ← û (3). Repeat with ū ← û.

