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Setting

Optimal transport problem*:

inf /Xc(x, T(x)) dp(x).

T: X=Y, Typ=v

We assume that:

m The nonempty open sets X and Y are convex and bounded.
m The measure 4 has a bounded density f: X — R,
m (allows measures with non-convex / non-connected support)
m The measure v has a positive, Lipschitz continuous density
g: Y- Rj_.
m (implies convex support)
m (For now) c is the quadratic cost function (x,y) + |x — y|°.

*The constraint Txp = v means that u(T 1(E)) = v(E), for any Borel
set E C Y. Measures p and v must have the same mass.
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Monge-Ampére equation of optimal transport

The optimal transport map is of the form T = Vu where u: X — R
is solution to the second boundary value problem for the
Monge-Ampére equation:

det V2u(x) = f(x)/g(Vu(x)) in X,
V2u(x) =0 in X,
Vu(X)CY.

m V2u(x) = 0 (V2u(x) is positive semidefinite) is a convexity
constraint.
m Vu(X) C Y is a boundary condition (by convexity, equivalent
to Vu(0X) CY).
How to discretize the Monge-Ampére problem in order to solve it
numerically?
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Outline

Discretization of the Monge-Ampére equation.
Handling of the optimal transport boundary condition.

Numerical results.
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Discretization of the Monge-Ampére equation

For simplicity, we consider the simple Monge-Ampére equation:
det V2u(x) = f(x) in X.

m The left-hand side is monotone with respect to V2u(x), for the
Loewner order, provided that V2u(x) = 0.

m Thus the Monge-Ampére equation belongs to the class of
degenerate elliptic equations.

m Monotone schemes is a category of numerical schemes that is
well-suited for the discretization of degenerate elliptic equations.

How to discretize det V2u(x) in a monotone way?
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Reformulation

m Denote by Sj (resp. S:,r+) the set of symmetric positive
semidefinite (resp. definite) matrices of size d.
m Then for M € Sj,

d(det M)Y/9 = inf Tr(DM)
DeS;S T, det D=1

m (Justified using the inequality of arithmetic and geometric
means on eigenvalues of DM.)

m Successive reformulations of the Monge-Ampére equation:

df (x)¥9 — d(det V2u(x))¥9 =0 in X,

sup <df(x)l/d - Tr(Dv2u(x))) ~0 in X,
DeSS T, det D=1

max (d(f(x) det D)9 — Tr(DV2u(X))) =0 inX.

DeS], Tr(D)=1
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Discussion of the reformulation

max

(d(f(x) det D)/ — TF(DVZU(X))) =0 inX.
DeS, Tr(D)=1

m Reformulation first used numerically in Feng, Jensen, 2017.
m We could have stopped earlier in the reformulation process
(maximizing over D € SjJr satisfying det D = 1 instead of

Tr(D) =1).
m This would have yielded (some variant of) the MA-LBR scheme,

see Benamou, Collino, Mirebeau, 2016.

m Benefits of the Feng and Jensen reformulation:
m Maximum of a concave function over a compact set.
m This reformulation enforces the convexity of its solutions.
m No need to discretize the convexity constraint separately.
m No need of damping when solving the resulting scheme with

the Newton method, as opposed to the MA-LBR scheme.
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Finite difference discretization in dimension two

For any D € S5, we have to discretize the second-order term
Tr(DV2u(x)) in a monotone way.

Selling's decomposition (a tool from low-dimensional lattice
geometry) is of the form

3
D= Z)\,-e,-e,-T,
i=1

with weights \; > 0 and offsets e; € Z9 (not the
eigendecomposition).
Then, with consistency at the order two,

Tr(DV2u(x)) =~ AP u(x),

where

3
D ' u(x + he;) + u(x — hej) — 2u(x)
Ay u(x) = IEI Ai 2 .
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Selling’s decomposition — illustration

The set {D € S&F | Tr(D) = 1} is a disk:

wesi T =n={3 ("1 2 ) [n=1}.

P2

Offsets of Selling’s decomposition are constant on each cell of some
infinite triangulation of this disk (but weights vary on those cells).
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Discretization of the Feng and Jensen operator

On a Cartesian grid G, C X N hZ?, G, =~ X N hZ?, we let

(Fpu)[x] = max (2(f(x)detz>)1/2—Nh>u(x)).
DeSS, Tr(D=1)

Not an exact definition since we need to explain how to compute or
approximate the maximum. Our strategy:

m Keep only a finite number of cells in the triangulation of the
parameter set.

m Use a closed-form formula for the maximum on each of those
cells (B., Mirebeau, 2021: this closed-form formula exists and is
numerically exploitable).

Numerically more efficient than the alternative (discretizing the
parameter set).
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More general Monge-Ampére equations

General form of the Monge-Ampére equation:
det (V2u(x) — A(x, Vu(x))) = B(x, Vu(x)) in X,
with admissibility constraint
V2u(x) = A(x, Vu(x)) in X.
Feng and Jensen reformulation:

max (d(B(x, Vu(x)) det D)V + Tr(DA(x, Vu(x)))
DeSS, Tr(D)=1

- Tr(DVzu(x))> =0 inX.

In this setting, we use a Lax-Friedrichs approximation of Vu(x).
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Numerical efficiency

In the smooth case, we assume that the Monge-Ampére problem has
a solution of class C? with a uniformly admissible Hessian.

General case Smooth | Smooth case,
case Lax-Friedrichs
Consistency
error O(h?*/3) O(h?) O(h)
Numerical
cost O(h=%3log(1+ h71)) | O(h7?) O(h™?)
Numerical
cost
(discretized O(h~19/3) O(h=9) o(h™)
maximum)

The numerical cost with the discretized maximum is to retain the

same order of consistency.
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Outline

Discretization of the Monge-Ampére equation.
Handling of the optimal transport boundary condition.

Numerical results.
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One-dimensional problem

For simplicity, let us consider the one-dimensional Monge-Ampére
problem, with X = Y = (—1,1) and g = 1

u'(x)=f(x) in(-1,1),
u(x)e[-1,1], vxe(-1,1).

Example: solution with f = 2X(_l 1y

272

u(x)

Nl—F -
—_ -

-1 -1 0
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Reformulation suitable for discretization (1/2)

m The optimal transport boundary condition
J(x) e [-1,1], Vxe(-1,1),
may be reformulated in the inequality form
|u'(x)]—=1<0 in(-1,1).

m (Generalizes to higher dimensions using the signed distance
function to 9Y.)

m We have both an equality and an inequality on the whole
domain (—1,1) = How to turn them into a single equation?
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Reformulation suitable for discretization (2/2)

m Following Froese, 2019, we consider the maximum between the
Monge-Ampére operator and the optimal transport boundary
condition operator.

m Need to add a condition on 9(—1, 1).

m Appropriate choice: Dirichlet boundary condition
u(—1) = u(1) = +o0, in the weak sense of viscosity solutions.
m (Induces no boundary layer.)

m Resulting system:

{max{f — || =1} =0 in(=1,1),
u(—1) = u(1l) = +oo.

16 /31



Justification of the reformulation

m Froese, 2019: all subsolutions to the reformulated problem are
solutions to the original Monge-Ampére problem.

m Particularly strong result (concerns subsolutions, not only
solutions).
m Justification:
m If max{f — u”,|u'| — 1} <0, then both v/ > f and |¢/| < 1.
m By a competition argument between both inequalities, deduce
that actually v’ = f in (—1,1).

m What about supersolutions?
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Case of supersolutions

m If max{f — ", |u/| — 1} >0, then either u” < f or || > 1.

m Thanks to the appropriate choice of the boundary condition
u(—1) = u(1) = 400 in the viscosity sense, one can show that
supersolutions also satisfy v'(—1) < —1 and ¢/(1) > 1.

m Pathological example of a supersolution that is not a solution:

' <f W >1

m Hope: supersolutions are not too dissimilar from solutions.
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Slope-limited convex envelope

m We define a slope-limited convex envelope uy of the
supersolution w.

m Supremum of supporting hyperplanes whose slope belong to the
target set Y = [-1,1].

m uy satisfies (uy)” < f on the whole domain (—1,1).

W >10 " <f |W|>1
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Competition argument

m Remember that v/(—1) < —1 and /(1) > 1.
m One can deduce that (uv3y")'(—1) < —1and (uy) (1) > 1
(actually with equalities).

m By a competition argument with the inequality (u})” < f on
(—1,1), one can show that (u}*)” = f on (—1,1).

AT <R
(uy)(~1) < —1 \"\y (uy)(1) > 1
T () <f

m Conclusion: if u is a supersolution to the reformulated
Monge-Ampeére problem, then uy* is a solution to the original
problem.
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Summary

m Reformulated system for the Monge-Ampére problem:

{max{f — " Ju| =1} =0 in(=1,1),
u(—1) = u(1) = +oo.

m Subsolutions are solutions to the original system.

m Supersolutions may be turned into solutions to the original
system.

m B., Mirebeau, 2021: proof for systems associated to optimal
transport problems with quadratic cost, in arbitrary dimension
and with potentially nonconstant target density g.

m Need to use the appropriate notions of weak solutions:
m Viscosity solutions for the reformulated system.
B Aleksandrov (equivalently Brenier) solutions for the original
system.
m The numerical scheme is a discretization of the reformulated

system.
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Mass balance condition

m In order for the systems to be well-posed, one has to assume
the mass balance condition

/11 f(x)dx = /llg(y) dy

(or f_ll f(x) dx = 2 in the particular case g = 1).
m Usually, no discrete counterpart to the mass balance condition
holds at the discrete level.

m Therefore, a scheme that is a direct discretization of the
reformulated system often does not admit solutions.

m How to modify the reformulated system in order to weaken the
need for the mass balance condition?
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Weakening the need for the mass balance condition

m Approach 1: replace the (weak) Dirichlet boundary condition
u=-+ooon dX by u=0o0ndX.
m Approach used in Froese, 2019.
m Theoretical guarantees of existence and convergence of
solutions to numerical schemes (for quadratic transport costs).
m Schemes have to be underestimating, numerical artifacts may
appear near the boundary.
m Approach 2: Add an unknown « € R and solve the modified
system

max{f —u” + a,|t/| =1} =0 in(-1,1),
u(—1) = u(1l) = +oo.
m Approach used as a numerical trick in Benamou, Duval, 2019.
m Our contribution: theoretical guarantees for this approach
(existence and convergence of solutions to numerical schemes,
for quadratic transport costs).
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Study of the augmented system

System with the additional unknown:

{max{f —u' 4+ a,|u|—-1}=0 in(-1,1),
u(—1) = u(1) = +o0.

Properties depending on the sign of a:

a<0 a=0 a>0
no supersolutions | existence of no subsolutions
(many subsolutions) | a solution | (many supersolutions)

Proof of no sub- / supersolutions: refinement of the competition
arguments described previously.
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Convergence result

m B., Mirebeau, 2021: under suitable assumptions, solutions
(up, arp) to the finite difference scheme converge to (u,0) where
u solves the Monge-Ampére problem.

m Main assumptions: X is strongly convex, Y is convex, f > 0 is
bounded and almost everywhere continuous, g is positive and
Lipschitz continuous.

m Sketch of proof:

Arzela-Ascoli: (up, ap) converge, up to extraction, to some
(u, ).

Barles, Souganidis, 1991: u solution to the reformulated
problem with additional parameter «.

Solutions only exist for &« = 0, so a = 0.

u solution with « =0 = u subsolution with a =0 = u
solution to the original Monge-Ampére problem.

Conclude using uniqueness for the original problem.
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Existence of solutions

m B., Mirebeau, 2021: under suitable assumptions, there exists a
solution (up, ap) to the scheme.

m Proved in a general setting which allows general optimal
transport costs (or even non-Monge-Ampére equations).

m Existence of solutions for monotone schemes is usually proved
using Perron’s method.

m Main difficulty here: the scheme is monotone with respect to u
for fixed «, but not monotone with respect to the pair of
unknowns (u, @).

m We add to adapt Perron’s method to this setting, handling the
unknown « separately in the proof.
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Outline

Discretization of the Monge-Ampére equation.
Handling of the optimal transport boundary condition.

Numerical results.
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Application to quadratic optimal transport problems

m Top: source

density.

m Middle: results
with constant
target density.

m Bottom: results
with nonconstant
target density.
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Application to nonimaging optics

We solve the far field refractor
problem in nonimaging optics:
given a uniform point light source,
what should be the shape of the
lens so that a given target image
is reconstructed on the screen?

m The screen is assumed to be
at infinite distance from the
light source.

m This problem reduces to
solving a Monge-Ampére
equation (in the general
form).
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Application to nonimaging optics

Simulation using the appleseed(®)
rendering engine

Shape and curvature of the lens (numerical solution)
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Conclusion and perspectives

Conclusion:
m Monotone finite difference scheme for the Monge-Ampére
equation of optimal transport.
m In dimension two, closed-form formula for the maximum at the
discrete level, which improves the efficiency of the scheme.
m Existence of solutions, and convergence in the setting of
quadratic optimal transport.
Perspectives:
m Adaptation of the closed-form formula to other equations (see
Bonnans, B., Mirebeau, 2021 for the Pucci equation).
m Convergence for Monge-Ampére problems with non absolutely
continuous source measures or with general transport costs.
m Analysis for yet more general equations, for instance
det (V2u(x) — A(x, u(x), Vu(x))) = B(x, u(x), Vu(x)).

Thank you for your attention.
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Monotone schemes

m On a grid G4, a scheme S;,: R%9 — R9% is monotone if its
residue (Spu)[x] at point x € Gy, is nonincreasing with respect

to the values {u(y) | y € Gn, y # x}.

m If the scheme is monotone, then the maximum v = max{u1, up}
of two subsolutions u; and us remains a subsolution.

u = max{u, uz} (Shu)bea] < (Shus)ba] <0
(Shu)[x1] < (Spur)[xa] <0 X2

u2

m By a compactness argument, a finite-valued supremum of
subsolutions is still a subsolution (if the scheme operator Sj, is
continuous).

31/31



Perron’s method

m Perron’'s method: If the scheme operator Sy, is monotone and
continuous, and if the pointwise supremum wu of all subsolutions
is finite-valued, then v is a solution to the scheme.

m Sketch of proof:

We already know that v is a subsolution.

If it is not a solution, then there exists x € Gp, such that
(Spu)x] < 0.

Then by perturbation we can build a subsolution & such that
a(x) > u(x).

Impossible since v is the pointwise supremum of all subsolutions.

subsolution
( by continuity
X |

subsolution by monotonicity
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Extension to our setting

m Scheme in our setting: (Sf'u)[x] = 0 in Gp, where:
m Unknowns are u € R9 and a € R.
m For fixed a € R, the operator S;*: RY9% — RY% is monotone.
m Perron’s method is not directly applicable since:
m The scheme is not monotone with respect to the pair (u, @).
m (Moreover for fixed «, the pointwise supremum of all
subsolutions u is everywhere +00.)
m Definition: a subsolution (u, @) to the scheme is a solution to
(Su)[x] < 0in Gp.
m Stability property: there is a,, € R such that o < a, for all
subsolutions to the scheme.
m (Remark: similarly, one has o < 0 for all subsolutions to the
continuous problem.)
m Stability + compactness = there exists a subsolution (7, &)
which maximizes o among all subsolutions.
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Proof of existence of solutions

There exists a nonempty set G; on which (Spw)[x] = 0, since
otherwise « could be increased.
Let i be the pointwise supremum of u such that (u, «) is
subsolution and v = on Gj (1).
By Perron’s argument, one has (S;'ii)[x] = 0 on G, \ Gj.
One of the following holds:
m (S7i)[x] =0 on G;. Then (i, ) is a solution.
m There exists x € G} such that (S5§d)[x] < 0. Then one can
build a perturbation i of i (2) for which the cardinal of G} is
reduced upon taking 7 < i (3). Repeat with T « 4.

1T ¥ 2

3I
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