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Overall motivation

Optimal transport is

m Gaining interest in data science.

m Data distribution P accessible via samples x1,...,x, € R, d >> 1.

m Typical situation: find a parametrized distribution Qg close to P.

Statement of the problem

Given samples x1,...,x, ~ Pandyy, ..., Y, ~ Q,
How to estimate efficiently Wo(P, Q)?
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An elementary Wasserstein estimation problem

Estimation of a shift
Consider x1, ..., %, ~ N (,1dy) and y1,. .., yu ~ N (p+6,1d,).

n E[lL I (i —x) — ol S /2.
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Kernel based distances

Reproducing Kernel Hilbert Spaces (RKHS)

Consider H C F(Q,R) Hilbert Space such that H < C°(Q).
m o, € H".

m (0, 0) =0v(x) =: (k(x,),0)H.

Dual norms (a.k.a. Maximum Mean Discrepancy (MMD))
m Mi(Q) C H, ||plln- = Sup|\f|\H§1<frV>~
2|k|oo

m || — pllpe S/ where fi := 2 ¥ | 6, independent of the
dimension.

Why? [[]|3;. = ||k'/2u||2, and Monte-Carlo rate.



W1 optimal tranpsort

Recall that

Wi(p, i) = sup  (f,u—1). (1)
fot|Vfllo<1

Dudley, 1969
If d > 2, on a bounded domain for the support of P,

E[|W1(Py, P)|] S O(n~/). (2)

Sharp if P has density w.r.t. Lebesgue.

Compare with kernel norms! n=1/2,



Goal: Define Est s.t. IE[Est(P,, Q) — WZZ(P, 9) < 1 (%).

B

Example: Est(Py, Q) = W2(Py, Q1) = O(n~4)in O(n®log(n)).

Q: Can we design statistical and computational efficient estimators of
high-dimensional W in good cases?




Goal: Define Est s.t. IE[Est(P,, Q) — WZZ(P, 9) < 1 (%).

B

Example: Est(Py, Q) = W2(Py, Q1) = O(n~4)in O(n®log(n)).

Q: Can we design statistical and computational efficient estimators of
high-dimensional W in good cases?

A: Yes, in the case of "smooth" W, using

Sum of Squares (SOS) approach on RKHS and sampling inequalities.
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State of the art

m Entropic optimal transport (EOT) with A regularization: O(; ‘”ZJW)'

m (Chizat et al, 2020), Estimation of (%) via EOT: O(e~4/2+2) and
O(e~(@+55)) operations. Curse of dimension.

m (Hutter, Rigollet, 2019), Minimax rates of convergences for smooth OT.

No computationally feasible algorithm

m (Weed, Berthet, 2019), need O(e™ T ) samples and O (g~ (24+d/2))
Computational time suffers from curse of dimensionality.

48



Smooth OT

Dual static formulation of OT:
OT(uv) = sup  [ulx)du(x)+ [o)dv(y)
u,veC(RY) (3)
subjectto c(x,y) > u(x) +v(y), Y(x,y) € X xY,

Theorem

Let X,Y be two bounded open subsets of R?, let ¢ be the quadratic cost
c(x,y) = M andk > 0. If (4, v) admit densities

(pu, pv) € CK(X) x CX(Y), bounded away from zero and infinity, and Y is
convex, then the optimal map T = Vu sending y onto v is @&,

Actually, only need the optimal potentials are

(4, v,) € H2(X) x H¥"2(Y) wheres > d + 1.
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Leveraging smoothness

Sampling inequalities:

m OO C R? with interior cone condition: include convex bounded sets.

m X ={xq,...,x,} the sampling set.
m Define fill distance h = sup, cq minyex [|xi = 2.

Then, it holds (Wendland, Rieger 2005)
£ loo(y < CEY2| fll s (2) + 21 floo(x) - (4)
ifh < “Ej‘}) ands > d/2.
Sample O x1,...,x,: p <1—96,if n > np(R,d), then
] 2/d
h<Cn V4 {log <”ﬂ . (5)

5
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Main issues to leverage smoothness in dual OT

m How to optimize on the set {(1,v); c(x,y) — u(x) —v(y) > 0},
[uell s, ol s < M2

m Subsampling the inequality: Control infp f if fx > 07
— Only Lipschitz bound can be used.

m Imposing to work on Fenchel-Legendre pairs ?
— Not feasible computationally

Solutions

Replace inequality by equality : represent nonnegative functions using sum
of squares (SOS)
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Sum of squares relaxation (Lasserre,...)

Optimizing on nonnegative polynomials

rr})in L(P) subject to (6)
A(P) = (7)
P(x) > 0for xs.t. Q;(x) >0. (8)

Include optimization of polynomials: min P(x).

Structural result: Positivestellensatz

mpin L(P) subject to )

A(P) =b (10)

P(x) = op(x) + Z(Ti(x)Qi(x) where 0;(x) = qu(x)z. (11)
j




SOS in RKHS

m Finding Global Minima via Kernel Approximations (Rudi,
Marteau-Ferrey, Bach, 2020).

k

c(x,y) —u(x) —o(y) = }_ hi(x,y)*.

i=1

(12)



SOS in RKHS

m Finding Global Minima via Kernel Approximations (Rudi,
Marteau-Ferrey, Bach, 2020).

k

c(x,y) —u(x) —o(y) = Y hi(x,y)*. (12)
i=1
Assume H RKHS with kernel k:
k
(y) —ulx) —o(y) = L Ky = (AR, (13)

where A self-adjoint, finite rank: A = Zi'(:l h; ® h;.



Representation result for smooth OT
Theorem

Let (14, v,) be Kantorovich potentials such that u, € H*"?(X) and

v, € H**2(Y) fors > d + 1. There exist functions wy, ..., wy € H*(X x Y)

such that

3l = ylI? = w(x) = vu(y) = Ty wi(x, )%, V(xy) € X x Y.
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Representation result for smooth OT
Theorem

Let (14, v,) be Kantorovich potentials such that u, € H*"?(X) and

v, € H**2(Y) fors > d + 1. There exist functions wy, ..., wy € H*(X x Y)
such that

3l = ylI? = w(x) = vu(y) = Ty wi(x, )%, V(xy) € X x Y.

Proof.

Consider £(x) = 15 —u.(x), f*(y) = 14"~ 0.(y).
f) +f*(y) = (xy) = h(x y)=0.
— Second order Taylor expansion on h(x, y) with remainder at points

)
Boy) = (= T6), [ A= OV3Aty-T(). (4

Strong convexity of f* + square root of Viyh. O




Soft-penalized OT-SOS formulation
"Continuous formulation"

OT-SOS(y,v) = sup x)dp(x +/
u,v,A

= Mtr(A) = Ap(Jlull + [lolF)  (15)
such that c — (u +v) = (k, Ak) .

"Sampled formulation”

OTS05(7,7) = sup [ u(x)df(x) + [ o(y)ds
u,v,A

= Mtr(A) = Ma(l[ull; + [Ioll7)  (16)

such that C(xk,yk) — u(xk) = v(yk) = <k(xk;yk)/Ak(xkr]/k)> :




Approximation result

Theorem
m e (0,1]
m (%;,7;) j € [1, €] uniform sampling on X X Y.
There exists {o(d, m) and C1, Ca(uy, v4) s.t. if £ > £y and if
A > C1€7m/2d+1/2 log g, Ay > H"Ll — ﬁH(Hs)* o Hl/ = 0H(H5)* + A1, (17)

then, with probability 1 — 4, we have

OT(,9) — OT(p,v)| < Cahs.

where

OT(#,0) = [ a(x)dp(x) + [ o(y)av(y) (18)

i1, O maximizers of OfS\OS(ﬁ,ﬁ).



Reduction to an SDP problem

m Q;; = kx (%, %) + ky(¥:, 7))

m Zj = Wy (%)) + Dv(F;) — A2c(%;, 77)
o P = . + 1912

m K= kXy(xl,yl,x],y])

m K= ®®" (Cholesky).

The dual problem writes:

1yl
frmng 4A27 TQy o, Li=17i% + 1y

suchthat  Yf 79;® + A ld, - 0.

OT = sz 2172 Zf:1 §i(@u (%) + Do (7))

(20)
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Computational complexity
Solving the SDP formulation: IPM

O(C+El+ 31log g) time, O(*) memory, (21)

where C is the cost for computing g> and E is the cost to compute one zj.

Theorem
The cost to achieve |6T —OT(u,v)| <e:
1. Time: O(e _max(4’mld))
2. Space: O (g™ m- d) #samples of u,v: O(e72).

Proof.

=2 _ — 1
ef=n,e=

O(C+E€—|—£35) O(n + 13+ (ny, + ny )+ £32)
:O( +€ —2-2d/(m— d)_|_£ 7d/(m— d) ( —max(4,7d/(m—d)))'
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Summary

m Leverage smoothness via sampling inequalities.

m Remove inequality constraint with equality (SOS).
m Need structural result on the optimum.
[

Reduction to SDP formulation.

No free lunch: curse of dimension is in the constants.
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What’s more ?

m Extension to mixture of gaussians- O(e - d) Space: O(e~ mdd)

m Access to densities: Time, O (g™ - d) Space: O(e~ mdd) #evaluations of
u,v: O(e™ mil).

m To come: Almost (statistical) optimal rates for estimation of potentials.

m Open: Efficient implementations/approximations?

More details: "A Dimension-free Computational Upper-bound for Smooth
Optimal Transport Estimation”. https://arxiv.org/abs/2101.05380
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https://arxiv.org/abs/2101.05380

What can be said on potentials?

Minimax rate of estimation: Hiitter and Rigollet.

Up to log terms (for the upper bound):

E([Vfe = Vful2ay) ~ 1~ 7. (22)

m is smoothness of data.
Estimator computationally not feasible.

What can be achieved in our framework?
Note that m = c0o —>

1 1
-» we have only estimates in on Wh.



Stability estimates

Question:

How good performance on the cost gives good performances on the
potentials?

Recall OT convex optimization problem: Given p, v € Py,

min (y(x,y),c(x,y)) =
yeC(pv)

sup  {(f,u) +(gv) | f(x)+gy) <clxy)}. (23)
£.8EC(X)xC(Y)

Estimate || fu — fullpy, + 1§+ — §nlly, with Dual(f,, g«) — Dual(f, gu)?
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The semi-dual functional: case ¢(x,y) =

Definition (Legendre transform)

Let f : X — R and c¢(x, y) continuous, define

fy) = infy-x— ().

3llx =

yl?

(24)

irflf]y,v(f) = {fim+

Retains more convexity.

V).

(25)
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Strong convexity estimates

Proposition

Consider potentials 7y-strongly convex C! with M-Lipschitz gradient

IV = Vil < 0 = T() < 5 IVF = Vil - @9)
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Reaching the % estimation.

We have: ’]‘un,vn (fn) - ]y,v<f*)| ~

Selle

V f smooth |]ptn,vn (f) — IMV(f)| ~
Thus

o (F) = Juw(F)] ~ } (29)
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Reaching the % estimation.

We have: Uyn,vn (fn) - hw(f*” ~ \}ﬁ (27)
¥ f smooth Jy, s, (f) = s (F)] ~ = 8)

Thus .
Ty (fn) = Juw (f)| ~ N (29)

m Suppose [y, v, (fn) realizes the minimum then J,, v, (fu) < Juv, (f«)
m And ]y,V(f*) < ]pw(fn)'

0= Jus (i) = T (o) = T () = T (F2) T () = s ()
= (u =t o= fod + 0= f = ) ~ 5 (GO

+ regularity assumptions (Gagliardo-Nirenberg inequality). 27/hs



Main result

Theorem
Leté$, e €]0,1[% and

log(2)\ mHirre log(1)\ ="
Aizﬁz%z( gn(‘”) +C1( g}f”) D

where Cy is a constant that does not depend on n and 8. With probability
>1—10forn>ny(X,Y,d,m),

IV fu = VillTag + 1V8n — V8alliag) < Cohn, (32)

where Cy independent from n and § (but co when ¢ = Q). The minimax rate is
nearly attained:

m+1
m+d/2+¢

. A log(2)
IV = V5.l + 1980 = Vel < & (52) ™.
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Unbalanced optimal transport

Optimal transport applications: Imaging, machine learning, gradient flows, ...

Bottleneck in optimal transport: data has fixed total mass. )

e Relax the mass constraint to extend OT distance between positive
measures of arbitrary mass.

e Develop associated numerical algorithms.
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Unbalanced optimal transport
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Figure: Optimal transport between bimodal densities
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Unbalanced optimal transport
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Figure: Another transformation
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Two possible directions

Pros and cons:

e Extend static formulation:

min AKL(Proj! 7, p1) + AKL(Proj? 7, p2)
+ / y)Pdxdy (34)

Good for numerics, but is it a distance ?

e Extend dynamic formulation: on the tangent space of a density, choose
a metric on the transverse direction.

Built-in metric property but does there exist a static formulation ?
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)

p=—V-(ov)+ap,

where & can be understood as the growth rate.

WF2(u,v) ::1nf§//\vxt]pxt)dxdt

UlX

+ E/0 /Mtx(x,t)zp(x,t) dxdt.

where J is a length parameter.
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A relaxed static OT formulation

Define

v = [ Lo (SL) v+ vl

WF(p1,p2) = inf KL(Proj. 7, p1) + KL(Prof; 7, 02)

— /MZ y(x,y) log(cosz(min(d(x,y)/z, 67t/2))) dxdy

Theorem

On a Riemannian manifold (compact without boundary) or Euclidean space, the static and
dynamic formulations are equal.

34/48



[[lustration

30

60 40

Figure: Standard OT Figure: Wasserstein-Fisher-Rao

35/48



Yet another equivalent formulation

Liero, Mielke, Savaré. J

WEFR is Wasserstein 2 on P(M x R ) with second moment constraint.

WFR(p,v) = r%uﬂn Wa(fi, 7) (35)
with the constraint:
| Pt =u), (36)
Ry
and
/]R r2di(x,r) = v(x), (37)

Here ¥ = m and on C(M x R ) cone metric:

d((x1,7m), (x2, rz))2 = r% + r% — 27112¥ COS <;dM(x1,x2) A 7'() . (38)
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Introduction to Gromov-Wasserstein

Comparing metric-measure spaces

Let X = {(X,d,u), (X,d) polish space, u probability measure}.
How to compare such spaces ?

Isometric mm-spaces: ¢ : X — Y, ¢.(4) = v and ¢ isometric: ¢p*dy = dx.

m Developed by Gromov, Memoli, Sturm.

m Applications in and outside mathematics: graph matching, quantum
chemistry, NLP.



Two different distances

D? distance: infimum on the set of embeddings, Sturm, 2006

DX(X,Y) := {Pf}(lf{igfm dz((x), 9))); ($,9) + (X,Y) = Zand 70 € Cugpy },

P, ¢ being isometric embeddings.

1. Reformulation on minimising a coupling pseudo-metric on X x Y.

2. Non-convex optimization problem.




Two different distances

GW? distance: comparison of pairwise distances (distortion distances)

GW2(X,Y) := inf{(m(x,y) ® n(x',y'), [dx (5, ') = dy(1,¥')2); 7 € Cpp -

1. Non-convex optimization problem.

2. When X, Y are Euclidean spaces = concave optimization problem.

‘O

(Xx r@/) (\/x , vau)
<T’ (OIX-J

T. TeT Te%v}

Te CO@}) vé;)\/
Wk comdbracnt :
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Properties of D and GW

1. Same topology (on compact spaces with uniformly bounded diameters).
2. D gives complete metric space, not GIV.

3. Both are length spaces. E.g. (X x Y, (td% + (1 — t)d%)'/2, 7r) for GW.
4

. GW has non-negative Alexandrov curvature.
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How to solve GW numerically
Developing the squares, problem equivalent to

GW(X,Y) = inf{—(7r(x,x") @ 7r(y, /), dx (%, x")dy (y,/)) ; 70 € Cupuy } -

If X,Y are Euclidean, —||x — x'||[|[y — y/'|| is a negative kernel on C;;y ,, -

= concave minimization problem.

Proposition

Konno’s result: following relaxation is tight

GW2(X,Y) = inf{—( @7, dx(x, )y (4,1)); 77 € e} (39)

Linear w.r.t. to each variable —> alternate minimization.

In practice, add entropic regularization.
GW3(X,Y) = i7rn£{—<7'[ @, dx(x,x")dy(y,y')) + eKL(7r, u @ v)

+eKL(v, u®@v); m,7v € Cuyuy ) (40)
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Two possible directions again

Consider mm-spaces: (X, d, u) with u € M4 (X).
1. Extend D.
2. Extend GW.
Simple method: use UOT instead of OT where it appears.

We are interested in the extension of GW since the optimization problem
seems nicer for numerics.
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Two possible directions again

Consider mm-spaces: (X, d, u) with u € M4 (X).
1. Extend D. De Ponti, Mondino, 2020.
2. Extend GW. Séjourné, Peyré, Vialard, 2020.
Simple method: use UOT instead of OT where it appears.

We are interested in the extension of GW since the optimization problem
seems nicer for numerics.




Don’t mess up with homogeneity

First idea that doesn’t work
(ld(x,x") —d(y,y") |, m ® m) + KL(my, ) + KL(71, ) . (41)J
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Don’t mess up with homogeneity

First idea that doesn’t work

(Jd(x, ') —d(y,y)?, m® ) + KL(m, p) + KL(mp,v) . (41)

v

Better proposal: see it as optimal transport in T ® 7T

UGW =

(T(d(x,x")—d(y,y)]), n@n) +KL([m® ], p ® u) + KL([7r ® 71]2,1/®1/)(. |
42

v

1. Good for numerics (similar alternating minimization schemes).

2. Not a distance (as shown by numerics).

44/ 48



The conic distance between unbalanced mm spaces

GW2(X,Y) :=
inf(7r © 7, & ((dx(x,x'),r"), (dy (y,y'),s8")))

s.t. /rsrzszn((x, ), (Y,8)) € Cuxy -

with 77([x, 7], [y, s]) and d the distance on the cone over R}
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The conic distance between unbalanced mm spaces

GW2(X,Y) :=
inf(7r © 7, & ((dx(x,x'),r"), (dy (y,y'),s8")))

s.t. /rsr2sz7r((x, ), (Y,8)) € Cuxy -

with 77([x, 7], [y, s]) and d the distance on the cone over R}

m Invariant with respect to dilations: let v : ([x, 7], [y,s]) — R, then
define hy([x, 7], [y,s]) = ([x,7/v],y,s/v]) and

Dil, : M4 (C(X),C(Y)) = M1 (C(X),C(Y)) (43)
a = [holy(vFa), (44)

m Key point for proving triangle inequality.



Main result:

Theorem
CGW s a distance.

UGW(X,Y) =0 < X andY isomorphic. (45)

UGW < CGW (46)

Proof.
Lift the optimal plan of UGW to the cone to obtain a competitor in CGW. [
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[[lustration

Figure: Standard GW

30

60

40

02

04

Figure: Unbalanced GW
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Perspectives

1. Applications: "Gromov-Wasserstein optimal transport to align single-cell

multi-omics data", (Demetci et al.).

hromatin

My
ks Z K

expression
7

Figure: A

2. Metric and topological properties of CGW.
3. Statistical estimations of GW and UGW.
4. Mitigating the bias of entropy regularization.
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