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Sampling as optimization over distributions

Assume that π ∈ P2(Rd ) =
{
µ ∈ P(Rd ),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

π = argmin
µ∈P2(Rd )

D(µ|π) := F(µ),

where D is a dissimilarity functional.

Starting from an initial distribution µ0 ∈ P2(Rd ), one can then
consider the Wasserstein gradient flow of F over P2(Rd ) to
transport µ0 to π.

3/ 61



Ex 1: Bayesian inference
Problem : Sample from a target distribution π over Rd , whose density
w.r.t. Lebesgue is known up to an intractable constant Z :

π(x) =
π̃(x)

Z

Motivation : Bayesian statistics.
I Let D = (wi , yi )i=1,...,N observed data.

I Assume an underlying model parametrized by θ
(e.g. p(y |w , θ) gaussian)

=⇒ Likelihood: p(D|θ) =
∏N

i=1 p(yi |θ,wi ).

I Assume also θ ∼ p (prior distribution).

Bayes’ rule : π(θ) := p(θ|D) =
p(D|θ)p(θ)

Z
, Z =

∫
Rd

p(D|θ)p(θ)dθ.

Can be written as an optimization problem on P, e.g.

min
µ∈P

KL(µ|π)
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Ex 2 : Regression with infinite width NN

Assume ∃π ∈ P , E[y |X = x ] = EZ∼π[φZ (x)], then the above
problem corresponds to

min
ν∈P

MMD2(ν, π)
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Wasserstein gradient flows (WGF) [Ambrosio et al., 2008]

The differential of µ 7→ F(µ) evaluated at µ ∈ P is the unique
function ∂F(µ)

∂µ : Rd → R s. t. for any µ, µ′ ∈ P, µ′ − µ ∈ P:

lim
ε→0

1
ε

(F(µ+ ε(µ′ − µ))−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)(dµ′ − dµ)(x).

Then µ : [0,∞]→ P, t 7→ µt satisfies a Wasserstein gradient

flow of F if distributionnally:

∂µt

∂t
= div

(
µt∇W2F(µt )

)
,

where ∇W2F(µ) := ∇∂F(µ)
∂µ ∈ L2(µ) denotes the Wasserstein

gradient of F .
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Some time discretizations

1. Forward method :

µn+1 = expµn (−γ∇W2F(µn)) = (I − γ∇W2F(µn))# µn

where expµ : L2(µ)→ P, φ 7→ (I + φ)#µ,
and which corresponds in Rd to:

Xn+1 = Xn − γ∇W2F(µn)(Xn) ∼ µn+1

2. Backward method :
µn+1 = JKOγF (µn)

where JKOγF (ν) = argmin
µ∈P

F(µ) +
1

2γ
W 2

2 (ν, µ).

3. Forward-Backward method, splitting :

νn+1 = (I − γ∇W2F1(µn))#µn

µn+1 = JKOγF2 (νn+1)

if F(µ) = F1(µ) + F2(µ).
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Choice of the loss function
Many possibilities for the choice of D among Wasserstein distances,
f -divergences, Integral Probability Metrics... e.g.:

I D is the KL (Kullback-Leibler divergence):

KL(µ|π) =

{ ∫
Rd log

(
µ
π (x)

)
dµ(x) if µ� π

+∞ otherwise.

I D is the MMD (Maximum Mean Discrepancy):

MMD2(µ, π) =

∫∫
Rd

k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dπ(x)dπ(y)− 2
∫∫

Rd
k(x , y)dµ(x)dπ(y).

where k : Rd × Rd → R is a p.s.d. kernel.
I D is the KSD (Kernel Stein Discrepancy):

KSD2(µ|π) =

∫∫
Rd

kπ(x , y)dµ(x)dµ(y), where

kπ(x , y) = ∇ log π(x)T∇ log π(y)k(x , y) +∇ log π(x)T∇y k(x , y)

+∇xk(x , y)T∇ log(y) +∇ ·x ∇y k(x , y). 9/ 61



Background on kernels and RKHS [Steinwart and Christmann, 2008]

I Let k : Rd × Rd → R a positive, semi-definite kernel, e.g. k(x , x ′) =

exp
(
−‖x−x ′‖2

h

)
, exp

(
−‖x−x ′‖

h

)
, (c + ‖x − x ′‖)β with β ∈]0,1[. . .

I Hk its corresponding RKHS (Reproducing Kernel Hilbert Space):

Hk =

{
m∑

i=1

αik(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd

}
I Hk is a Hilbert space with inner product 〈., .〉Hk and norm ‖.‖Hk .

It satisfies the reproducing property:

∀ f ∈ H, x ∈ Rd , f (x) = 〈f , k(x , .)〉H
I Consequence : for any f ∈ Hk , by the reproducing property and

Cauchy-Schwartz inequality,∣∣∣∣∫
Rd

f (x)dπ(x)−
∫
Rd

f (x)dµ(x)

∣∣∣∣ ≤ ‖f‖Hk MMD(µ, π).

I We denote by Hd
k the Cartesian product RKHS
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MMD and KSD Descent
For discrete measures µN = 1/N

∑N
i=1 δX i , we can define

F (X 1, . . . ,X N) := F(µN) when it is well defined (e.g., for the MMD or
KSD).

In that case, Forward method for WGF = Gradient descent for F on
the position of the particles.

I If D is the MMD, the gradient of F is readily obtained as

∇x i F (X 1, . . . ,X N) =
1
N

N∑
j=1

∇2k(X i ,X j )−
∫
∇2k(X i , x)dπ(x).

=⇒ requires to know the density π, or at least samples from it !
I In contrast, if D is the KSD,

∇x i F (X 1, . . . ,X N) =
1
N

N∑
j=1

∇2kπ(X i ,X j ).

Algorithm: at each time n ≥ 0, for any i = 1, . . . ,N:

X i
n+1 = Xn − γ∇x i F (X 1

n , . . . ,X
N
n ).
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Sampling as optimization of the KL
The target distribution π is solution of :

min
µ∈P(Rd )

KL(µ|π) (1)

1. Variants of Langevin Monte Carlo (LMC)
[Dalalyan, 2017], [Durmus and Moulines, 2016], [Durmus et al., 2019],

Xk+1 = Xk + γ∇ log π(Xk ) +
√

2γεk , εk ∼ N (0, Id )

I generates a Markov chain whose law converges to π
I corresponds to a time-discretization of the gradient flow of the KL
I rates of convergence deteriorates quickly in high dimensions

2. Variational Inference (VI):
[Alquier and Ridgway, 2017], [Zhang et al., 2018]

I restrict the search space in (1) to a parametric family
I tractable in the large scale setting
I only returns an approximation of π
=⇒ Other algorithms can be obtained by discretizing the W2
gradient flow of the KL...
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Forward method for the KL

Problem: ∇W2 KL(µn|π) = ∇ log
(µn
π

)
where µn is unknown.

While ∇ log π is known, ∇ logµn has to be estimated from N
particles X 1

n , . . . ,X N
n , e.g. with1 :

1. Kernel Density Estimation (KDE):

µn(.) ≈ 1
N

N∑
i=1

k(X i
n − .)

Then,

−∇W2 KL(µn|π)(.) ≈ −

(
∇V (.) +

∑N
i=1∇k(.− X i

n)∑N
i=1 k(.− X i

n)

)

Remark: it is not the W2 gradient of some functional (see the
next slide)

1assume a symmetric, translation invariant kernel
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2. Blob Method [Carrillo et al., 2019]:
Instead of

U(µ) =

∫
log(µ(x))dµ(x),

consider

Uk (µ) =

∫
log(k ? µ(x))dµ(x), where k?µ(x) =

∫
k(x−y)dµ(y).

Then,
∂Uk (µ)

∂µ
(.) = k ?

(
µ

k ? µ

)
+ log(k ? µ)

=⇒ ∇W2Uk (µ) = = ∇k ?
(

µ

k ? µ

)
+∇ log(k ? µ)︸ ︷︷ ︸

∇k?µ
k?µ

=⇒ ∇W2 KL(µn|π)(.) ≈ − (∇V (.)+

N∑
i=1

∇k(.− X i
n)∑N

m=1 k(X i
n − X m

n )
+

∑N
i=1∇k(.− X i

n)∑N
i=1 k(.− X i

n)

)
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Stein Variational Gradient Descent [Liu and Wang, 2016]

−∇W2 KL(µn|π)(.) ≈ − 1
N

(
N∑

i=1

k(.− X j
n)∇V (X i

n) +∇X i
n
k(.− X i

n)

)

3. Stein Variational Gradient Descent (SVGD)
[Liu, 2017], [Duncan et al., 2019]

I "non parametric" VI, only depends on the choice of some
kernel k

I corresponds to a time-discretization of the gradient flow of
the KL under a metric depending on k

W 2
k (µ0, µ1) = inf

µ,v

{∫ 1

0
‖vt (x)‖2Hd

k
dt(x) :

∂µt

∂t
=∇ · (µtvt )

}
.

https://chi-feng.github.io/mcmc-demo/app.html?
algorithm=SVGD&target=banana
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SVGD in the ML literature

I Empirical performance demonstrated in various tasks:
I Bayesian inference [Liu and Wang, 2016, Feng et al., 2017,

Liu and Zhu, 2018, Detommaso et al., 2018]

I learning deep probabilistic models
[Wang and Liu, 2016, Pu et al., 2017]

I reinforcement learning [Liu et al., 2017]

I Theoretical guarantees :
I asymptotic theory: (in continuous time, infinite number of

particles) converges asymptotically to π [Lu et al., 2019] when
V grows at most polynomially

I non asymptotic theory: no rates of convergence, only
partial results [Korba et al., 2020]
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SVGD trick and the kernel integral operator
We assume

∫
Rd×Rd k(x , x)dµ(x) <∞ for any µ ∈ P. =⇒ H ⊂ L2(µ).

For instance assume ‖k(x , .)‖2
Hk

= k(x , x) ≤ B2, then for f ∈ Hk

‖f‖2
L2(µ) =

∫
‖f (x)‖2dµ(x) =

∫
〈f , k(x , .)〉2Hk

dµ(x)

≤ ‖f‖2
Hk

∫
k(x , x)dµ(x) ≤ B2‖f‖2

Hk

Then, the injection from ι : H → L2(µ) admits an adjoint ι? = Sµ,

where Sµ : L2(µ)→ H is defined by:

Sµf (·) =

∫
k(x , .)f (x)dµ(x), f ∈ L2(µ).

We have for any f ,g ∈ L2(µ)×H :

〈f , ιg〉L2(µ) = 〈ι∗f ,g〉H = 〈Sµf ,g〉H.
We will denote Pµ = ι ◦ Sµ.
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SVGD algorithm
SVGD trick: applying this operator to the W2 gradient of KL(·|π)
leads to

Pµ∇ log
(µ
π

)
(·) =

∫
∇ log

(µ
π

)
(x)k(x , .)dµ(x)

= −
∫

[∇ log π(x)k(x , ·) +∇xk(x , ·)]dµ(x),

under appropriate boundary conditions on k and π, e.g.
lim‖x‖→∞ k(x , ·)π(x)→ 0.

Algorithm : Starting from N i.i.d. samples (X i
0)i=1,...,N ∼ µ0, SVGD

algorithm updates the N particles as follows :

X i
n+1 = X i

n − γ

 1
N

N∑
j=1

k(X i
n,X

j
n)∇X j

n
log π(X j

n) +∇X j
n
k(X j

n,X i
n)


︸ ︷︷ ︸

Pµ̂n∇ log( µ̂n
π )(X i

n), with µ̂n= 1
N

N∑
j=1
δ

Xj
n
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Continuous-time dynamics of SVGD
SVGD gradient flow [Liu, 2017],[Lu et al., 2019]:

∂µt

∂t
+ div(µtVt ) = 0, Vt := −Pµt∇ log

(µt

π

)

How fast the KL decreases along SVGD dynamics?

d KL(µt |π)

dt
=
〈

Vt ,∇ log
(µt

π

)〉
L2(µt )

= −
〈
ιSµt∇ log

(µt

π

)
,∇ log

(µt

π

)〉
L2(µt )

= −
∥∥∥Sµt∇ log

(µt

π

)∥∥∥2

H︸ ︷︷ ︸
KSD2(µt |π)

since ι∗ = Sµt

≤ 0.

On the r.h.s. we have the squared Kernel Stein discrepancy
(KSD) [Chwialkowski et al., 2016] or Stein Fisher information at µt .
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Stein Fisher information
Stationary condition : KSD2(µt |π) =

∥∥Sµt∇ log
(
µt
π

)∥∥2
H = 0.

Implies weak convergence of µt to π if [Gorham and Mackey, 2017]:

I π is distantly dissipative (e.g. gaussian mixtures):

lim inf
r→∞

κ(r) > 0,

κ(r) = inf{−2
〈∇ log π(x)−∇ log π(y), x − y〉

‖x − y‖2
2

; ‖x − y‖2
2 = r}

I k is translation invariant with a non-vanishing Fourier transform
and the sequence is uniformly tight;
or k is the IMQ kernel defined by k(x , y) = (c2 + ‖x − y‖2

2)β for
c > 0 and β ∈ [−1,0] (slow decay rate).

Proposition:[Korba et al., 2020] if k is bounded, π ∝ exp(−V ) with HV
bounded above and if ∃C > 0,

∫
‖x‖2dµt (x) < C for all t > 0, then

KSD2(µt |π)→ 0.
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Stein Fisher information
Stationary condition : KSD2(µt |π) =

∥∥Sµt∇ log
(
µt
π

)∥∥2
H = 0.

Implies weak convergence of µt to π if [Gorham and Mackey, 2017]:

I π is distantly dissipative (e.g. gaussian mixtures):

lim inf
r→∞

κ(r) > 0,

κ(r) = inf{−2
〈∇ log π(x)−∇ log π(y), x − y〉

‖x − y‖2
2

; ‖x − y‖2
2 = r}

I k is translation invariant with a non-vanishing Fourier transform
and the sequence is uniformly tight;
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Convergence of continuous-time dynamics
The convergence of the Stein Fisher information to 0 can be
slow. When do we have fast convergence of SVGD
dynamics?
π satisfies the Stein log-Sobolev inequality [Duncan et al., 2019] with
constant λ > 0 if for any µ:

KL(µ|π) ≤ 1
2λ

KSD2(µ|π).

If it holds,

d KL(µt |π)

dt
= −KSD2(µt |π) ≤ −2λKL(µt |π)

and by integrating :

KL(µt |π) ≤ e−2λt KL(µ0|π).
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"Classic" log-Sobolev inequality upper bounds the KL by the
Fisher divergence :

KL(µ|π) ≤ 1
2λ

∥∥∥∇ log
(µ
π

)∥∥∥2

L2(µ)
.

satisfied as soon as π is λ-log concave, but it’s more general.

When is Stein log-Sobolev satisfied? not as well known and
understood [Duncan et al., 2019], but :
I it fails to hold if k is too regular with respect to π
I some working examples in dimension 1
I whether it holds in higher dimension is more challenging

and subject to further research...
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Proof of a descent lemma for GD of a smooth function
Gradient descent for V : Rd → R a C2(Rd ) s.t. ‖HV (x)‖ ≤ M
for any x .

xn+1 = xn − γ∇V (xn).

Denote x(t) = xn − t∇V (xn) and ϕ(t) = V (x(t)). Using Taylor
expansion :

ϕ(γ) = ϕ(0) + γϕ′(0) +

∫ γ

0
(γ − t)ϕ′′(t)dt .

Since (ẍ(t) = 0):

ϕ′(0) = 〈∇V (x(0)), ẋ(0)〉 = 〈∇V (x(0)),−∇V (xn)〉 = −‖∇V (xn)‖2,
ϕ′′(t) = 〈ẋ(t),HV (x(t))ẋ(t)〉 ≤ M‖ẋ(t)‖2 = M‖∇V (xn)‖2,
we have

V (xn+1) ≤ V (xn)− γ‖∇V (xn)‖2 + M
∫ γ

0
(γ − t)‖∇V (xn)‖2dt

V (xn+1)− V (xn) ≤ −γ
(

1− Mγ

2

)
‖∇V (xn)‖2.
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Since (ẍ(t) = 0):
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A descent lemma for SVGD

Assume that π ∝ exp(−V ) where ‖HV (x)‖ ≤ M.
The Hessian of the KL at µ is an operator on L2(µ):

〈f ,HessKL(.|π)(µ)f 〉L2(µ) = EX∼µ

[
〈f (X ),HV (X )f (X )〉+ ‖Jf (X )‖2HS

]
and yet, this operator is not bounded due to the Jacobian
term.

In the case of SVGD, one restricts the descent directions f to
H. Under several assumptions (boundedness of k and ∇k , of
Hessian of V and moments on the trajectory) we could show for
γ small enough:

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H︸ ︷︷ ︸
KSD2(µn|π)

.

26/ 61



A descent lemma for SVGD

Assume that π ∝ exp(−V ) where ‖HV (x)‖ ≤ M.
The Hessian of the KL at µ is an operator on L2(µ):

〈f ,HessKL(.|π)(µ)f 〉L2(µ) = EX∼µ

[
〈f (X ),HV (X )f (X )〉+ ‖Jf (X )‖2HS

]
and yet, this operator is not bounded due to the Jacobian
term.

In the case of SVGD, one restricts the descent directions f to
H. Under several assumptions (boundedness of k and ∇k , of
Hessian of V and moments on the trajectory) we could show for
γ small enough:

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H︸ ︷︷ ︸
KSD2(µn|π)

.

26/ 61



Rates in terms of the Stein Fisher Information

Consequence of the descent lemma: for γ small enough,

min
k=1,...,n

KSD2(µn|π) ≤ 1
n

n∑
k=1

KSD2(µk |π) ≤ KL(µ0|π)

cγn
.

This result does not rely on:
I convexity of V
I nor on Stein log Sobolev inequality
I but only on smoothness of V .

unlike most convergence results on LMC which rely on Log
Sobolev inequality or convexity of V .
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Rates in terms of the KL objective?

To obtain rates, one may combine a descent lemma (1) of the
form

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H

and the Stein log-Sobolev inequality (2) with constant λ:

KL(µn+1|π)−KL(µn|π) ≤︸︷︷︸
(1)

−cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H
≤︸︷︷︸
(2)

−cγ2λKL(µn|π).

Iterating this inequality yields KL(µn|π) ≤ (1− 2cγλ)n KL(µ0|π).

"Classic" approach in optimization [Karimi et al., 2016] or in the
analysis of LMC.
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Not possible to combine both....
Given that both the kernel and its derivative are bounded, the
equation

∫ d∑
i=1

[(∂iV (x))2k(x , x)

− ∂iV (x)(∂1
i k(x , x) + ∂2

i k(x , x)) + ∂1
i ∂

2
i k(x , x)]dπ(x) <∞ (2)

reduces to a property on V which, as far as we can tell, always holds
on Rd ...

and this implies that Stein LSI does not hold [Duncan et al., 2019].

Remark : Equation (2) does not hold for :

I k polynomial of order ≥ 3, and

I π with exploding β moments with β ≥ 3 (ex: a student
distribution, which belongs to P the set of distributions with
bounded second moment).
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Experiments
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Figure: The particle implementation of the SVGD algorithm illustrates
the convergence of KSD2(µn|π) to 0.
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We already have a bound on µn versus π. What about µ̂n?

Recall that the practical SVGD implementation is :

X i
n+1 = X i

n − γPµ̂n∇ log

(
µ̂n

π

)
(X i

n), µ̂n =
1
N

N∑
j=1

δX j
n
.

where µ̂n denotes the empirical distribution of the interacting particles.

Propagation of chaos result
Let n ≥ 0 and T > 0. Under boundedness and Lipschitzness
assumptions for all k ,∇k ,V ; for any 0 ≤ n ≤ T

γ we have :

E[W 2
2 (µ̄n, µ̂n)] ≤ 1

2

(
1√
N

√
var(µ0)eLT

)
(e2LT − 1)

where L is a constant depending on k and π and µ̄n = 1
N

∑N
j=1 δX̄ j

n

with X̄ j
n ∼ µn i.i.d.
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Contributions and openings

I First rates of convergence for SVGD, using techniques
from optimal transport and optimization (discrete time -
infinite number of particles)

I Propagation of chaos bound (finite number of particles
regime)
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Open questions

I Rates in KL?

I Propagation of chaos : weaker assumptions? uniform in
time (UIT)?

I Is it possible to obtain a unified convergence bound
(decreasing as n,N →∞)? (requires UIT)

D(µ̂n, π) ≤ An + BN

I how good is SVGD quantisation?

I Other kernels?
SVGD dynamics also appear in black-box variational
inference and Gans [Chu et al., 2020], where the kernel is the
neural tangent kernel and depends on the current
distribution (k =⇒ kµn )
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Kernel Stein Discrepancy [Chwialkowski et al., 2016, Liu et al., 2016]

For µ, π ∈ P2(Rd ), the KSD of µ relative to π is defined as

KSD2(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y),

where kπ : Rd × Rd → R is the Stein kernel, defined through
I the score function s(x) = ∇ log π(x),
I a p.s.d. kernel k : Rd × Rd → R, k ∈ C2(Rd )2

For x , y ∈ Rd ,

kπ(x , y) = s(x)T s(y)k(x , y) + s(x)T∇2k(x , y)

+∇1k(x , y)T s(y) +∇ ·1 ∇2k(x , y)

=
d∑

i=1

∂ log π(x)

∂xi
.
∂ log π(y)

∂yi
.k(x , y) +

∂ log π(x)

∂xi
.
∂k(x , y)

∂yi

+
∂ log π(y)

∂yi
.
∂k(x , y)

∂xi
+
∂2k(x , y)

∂xi∂yi
∈ R.

2e.g. : k(x , y) = exp
(
−‖x − y‖2/h

)
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We have seen that the KSD2 is also as a kernelized Fisher
divergence (

∥∥∇ log
(µ
π

)∥∥2
L2(µ)

):

KSD2(µ|π) =
∥∥∥Sµ,k∇ log

(µ
π

)∥∥∥2

Hk

, Sµ,k : f 7→
∫

f (x)k(x , .)dµ(x).

∥∥∥Sµ,k∇ log
(µ
π

)∥∥∥2

Hk

= 〈Sµ,k∇ log
(µ
π

)
,Sµ,k∇ log

(µ
π

)
〉Hk

=

∫ ∫
∇ log

(µ
π

(x)
)
∇ log

(µ
π

(y)
)

k(x , y)dµ(x)dµ(y)

+ I.P.P 3 times3 (∇ logµ(x)dµ(x) = ∇µ(x)dx) recovers the
formula of the previous slide.

3Assuming appropriate boundary conditions, e.g.
lim‖x‖→∞ k(x , .)µ(x) = 0.
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Stein identity and link with MMD

Under mild assumptions on k and π, the Stein kernel kπ is p.s.d. and
satisfies a Stein identity [Oates et al., 2017]

∫
Rd

kπ(x , .)dπ(x) = 0.

Consequently, KSD is an MMD with kernel kπ, since:

MMD2(µ|π) =

∫
kπ(x , y)dµ(x)dµ(y) +

∫
kπ(x , y)dπ(x)dπ(y)

− 2
∫

kπ(x , y)dµ(x)dπ(y)

=

∫
kπ(x , y)dµ(x)dµ(y)

= KSD2(µ|π)
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KSD Descent - algorithms
We propose two ways to implement KSD Descent:

L-BFGS [Liu and Nocedal, 1989] is a quasi Newton algorithm that is
faster and more robust than Gradient Descent, and does not
require the choice of step-size!
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L-BFGS
L-BFGS ( Limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm ) is a quasi-Newton method:

xn+1 = xn − γnB−1
n ∇L(xn) := xn + γndn (3)

where B−1
n is a p.s.d. matrix approximating the inverse Hessian at xn.

Step1. (requires ∇L) It computes a cheap version of dn based on
BFGS recursion:

B−1
n+1 =

(
I − ∆xnyT

n

yT
n ∆xn

)
B−1

n

(
I − yn∆xT

n

yT
n ∆xn

)
+

∆xn∆xT
n

yT
n ∆xn

where ∆xn = xn+1 − xn

yn = ∇L(xn+1)−∇L(xn)

Step2. (requires L and ∇L) A line-search is performed to find the best
step-size in (3) :

L(xn + γndn) ≤ L(xn) + c1γn∇L(xn)T dn

∇L(xn + γndn)T dn ≥ c2∇L(xn)T dn
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Toy experiments - 2D standard gaussian

SVGD

MMD

KSD Grad KSD L-BFGS

The green points represent the initial positions of the particles.
The light grey curves correspond to their trajectories.
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SVGD vs KSD Descent - importance of the step-size
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Convergence speed of KSD and SVGD on a Gaussian problem
in 1D, with 30 particles.
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2D mixture of (isolated) Gaussians - failure cases

The green crosses indicate the initial particle positions
the blue ones are the final positions
The light red arrows correspond to the score directions.
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More initializations

Var\Init on the s.a. close to s.a.
Gaussian i.i.d.

init

0.1

0.3

2

Green crosses : initial particle positions
Blue crosses : final positions
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Stationary measures - some explanations

In the paper, we explain how particles can get stuck in planes
of symmetry of the target π.
I we show that if a stationary measure µ∞ is full support,

then F(µ∞) = 0.

I but we also show that if supp(µ0) ⊂M, whereM is a
plane of symmetry of π, then for any time t it remains true
for µt : supp(µt ) ⊂M.
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Isolated Gaussian mixture - annealing

Add an inverse temperature variable β : πβ(x) ∝ exp(−βV (x)) ,
with 0 < β ≤ 1 (i.e. multiply the score by β.)

β = 1 β = 0.1 β = 0.1→ 1

This is a hard problem, even for Langevin diffusions, where
tempering strategies also have been proposed.

Beyond Log-concavity: Provable Guarantees for Sampling
Multi-modal Distributions using Simulated Tempering Langevin
Monte Carlo. Rong Ge, Holden Lee, Andrej Risteski. 2017.
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Real world experiments (10 particles)
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Bayesian logistic regression.
Accuracy of the KSD descent and
SVGD for 13 datasets (d ≈ 50).
Both methods yield similar re-
sults. KSD is better by 2% on
one dataset.
Hint: convex likelihood.

Random KSD SVGD
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Bayesian ICA.
Each dot is the Amari distance be-
tween an estimated matrix and the
true unmixing matrix (d ≤ 8).
KSD is not better than random.
Hint: highly non-convex likelihood.
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So.. when does it work?

KSDD Stein points

Comparison of KSD Descent and Stein points on a “banana”
distribution. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a
log-concave distribution.

We posit that KSD Descent succeeds because there is no
saddle point in the potential.
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First strategy : functional inequality?
F(µ|π) =

∫∫
kπ(x , y)dµ(x)dµ(y).

We have

∂F(µ)

∂µ
=

∫
kπ(x , .)dµ(x) = Ex∼µ[kπ(x , .)]

and under appropriate growth assumptions on kπ:

∇W2F(µ) = Ex∼µ[∇2kπ(x , ·)],

Hence

dF(µt )

dt
= 〈∇W2F(µt ),−∇W2F(µt )〉L2(µt )

= −Ey∼µt

[
‖Ex∼µt [∇2kπ(x , y)]‖2

]
≤ 0.

=⇒Difficult to identify a functional inequality to relate
dF(µt )/dt to F(µt ), and establish convergence in continuous
time (similar to [Arbel et al., 2019]).
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Second strategy : geodesic convexity of the KSD?

Let ψ ∈ C∞c (Rd ) and the path ρt = (I + t∇ψ)#µ for t ∈ [0,1].

Define the quadratic form HessµF(ψ,ψ) := d2

dt2

∣∣∣
t=0
F(ρt ),

which is related to the W2 Hessian of F at µ.

For ψ ∈ C∞c (Rd ), we have

HessµF(ψ,ψ) = Ex ,y∼µ

[
∇ψ(x)T∇1∇2kπ(x , y)∇ψ(y)

]
+ Ex ,y∼µ

[
∇ψ(x)T H1kπ(x , y)∇ψ(x)

]
.

The first term is always positive but not the second one.

=⇒ the KSD is not convex w.r.t. W2 geodesics.
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Third strategy : curvature near equilibrium?
What happens near equilibrium π? the second term vanishes
due to the Stein property of kπ and :

Hessπ F(ψ,ψ) = ‖Sπ,kπLπψ‖2Hkπ
≥ 0

where

Lπ : f 7→ −∆f − 〈∇ log π,∇f 〉Rd

Sµ,kπ : f 7→
∫

kπ(x , .)f (x)dµ(x) ∈ Hkπ =
{

kπ(x , .), x ∈ Rd
}

Question: can we bound from below the Hessian at π by a
quadratic form on the tangent space of P2(Rd ) at π (⊂ L2(π))?

‖Sπ,kπLπψ‖2Hkπ
= Hessπ F(ψ,ψ) ≥ λ‖∇ψ‖2L2(π) ?

That would imply exponential decay of F near π.
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Curvature near equilibrium - negative result
The previous inequality

‖Sπ,kπLπψ‖2Hkπ
≥ λ‖∇ψ‖2L2(π)

I can be seen as a kernelized version of the Poincaré
inequality for π :

‖Lπψ‖2L2(π) ≥ λπ‖∇ψ‖
2
L2(π).

I can be written:

〈ψ,Pπ,kπψ〉L2(π) ≥ λ〈ψ,L−1
π ψ〉L2(π),

where Pπ,kπ : L2(π)→ L2(π), f 7→
∫

kπ(x , .)f (x)dπ(x).

Theorem : Let π ∝ e−V . Assume that V ∈ C2(Rd ), ∇V is
Lipschitz and Lπ has discrete spectrum. Then exponential
decay near equilibium does not hold.
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Contributions

Pros:
I KSD Descent is a very simple algorithm, and can be used

with L-BFGS [Liu and Nocedal, 1989] (fast, and does not require
the choice of a step-size as in SVGD)

I works well on log-concave targets (unimodal gaussian,
Bayesian logistic regression with gaussian priors) or "nice"
distributions (banana)

Cons:
I KSD is not convex w.r.t. W2, and no exponential decay

near equilibrium holds

I does not work well on non log-concave targets (mixture of
isolated gaussians, Bayesian ICA)
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Open questions

I explain the convergence of KSD Descent when π is
log-concave?

I quantify propagation of chaos ? (KSD for a finite number of
particles vs infinite - but non uniformly Lipschitz vector
field)

I how good is KSD quantisation?
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Code

I Python package to try KSD descent yourself:
pip install ksddescent

I website: pierreablin.github.io/ksddescent/
I It also features pytorch/numpy code for SVGD.
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Ongoing work - quantization of these methods - gaussian target

(a) SVGD Gaussian (b) NSVGD Laplace

(c) MMD-lbfgs (d) i.i.d.

Figure: (a)-(c) Final states of the algorithms for 1000 particles, after
1e4 iterations. The kernel bandwidth for all algorithms is set to 1.
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Ongoing work - quantization of these methods - gaussian target

2D 3D 4D

Figure: target distribution: π = N (0, 1/dId ).
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Ongoing work - quantization of these methods - gaussian target

Figure: (same target π) Importance of the choice of the bandwidth in
the MMD evaluation metric when evaluating the final states, in 2D.
From Left to Right: (evaluation) MMD bandwidth = 1, 0.7, 0.3.
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1 - Bayesian Logistic regression
Datapoints d1, . . . ,dq ∈ Rp, and labels y1, . . . , yq ∈ {±1}.
Labels yi are modelled as p(yi = 1|di ,w) = (1 + exp

(
−w>di

)
)−1 for

some w ∈ Rp.

The parameters w follow the law p(w |α) = N (0, α−1Ip), and α > 0 is
drawn from an exponential law p(α) = Exp(0.01).

The parameter vector is then x = [w , log(α)] ∈ Rp+1, and we use
KSD-LBFGS to obtain samples from p(x |

(
di , yi )

q
i=1

)
for 13 datasets,

with N = 10 particles for each.
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SVGD
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n
t Accuracy of the KSD descent and

SVGD on bayesian logistic regression
for 13 datasets.
Both methods yield similar results.
KSD is better by 2% on one dataset.
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2 - Bayesian Independent Component Analysis
ICA: x = W−1s, where x is an observed sample in Rp, W ∈ Rp×p is
the unknown square unmixing matrix, and s ∈ Rp are the
independent sources.
1)Assume that each component has the same density si ∼ ps.
2) The likelihood of the model is p(x |W ) = log |W |+

∑p
i=1 ps([Wx ]i ).

3)Prior: W has i.i.d. entries, of law N (0,1).
The posterior is p(W |x) ∝ p(x |W )p(W ), and the score is given by
s(W ) = W−> − ψ(Wx)x> −W , where ψ = − p′

s
ps

. In practice, we
choose ps such that ψ(·) = tanh(·). We then use the presented
algorithms to draw 10 particles W ∼ p(W |x) on 50 experiments.
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Left: p = 2. Middle: p = 4. Right: p = 8.
Each dot = Amari distance between an estimated matrix and the true
unmixing matrix.
KSD Descent is not better than random. Explanation: ICA
likelihood is highly non-convex. 14/ 17



(descent lemma for SVGD) Sketch of proof - 1
Fix n ≥ 0. Denote g = Pµn∇ log

(µn
π

)
, φt = I − tg for t ∈ [0, γ]

and ρt = (φt )#µn. We have ∂ρt
∂t

= div(ρtwt ) with wt = −g ◦φ−1
t .

Denote ϕ(t) = KL(ρt |π). Using a Taylor expansion,

ϕ(γ) = ϕ(0) + γϕ′(0) +

∫ γ

0
(γ − t)ϕ′′(t)dt .

Step 1. ϕ(0) = KL(µn|π) and ϕ(γ) = KL(µn+1|π).

Step 2. Using the chain rule,

ϕ′(t) = 〈∇W2 KL(ρt |π),wt〉L2(ρt )
.

Hence :

ϕ′(0) = −〈∇ log
(µn

π

)
,g〉L2(µn) = −

∥∥∥Sµn∇ log
(µn

π

)∥∥∥2

H
.
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Sketch of proof - 2
Step 3.

ϕ′′(t) = 〈wt ,HessKL(.|π)(ρt )wt〉L2(ρt )
:= ψ1(t) + ψ2(t),

ψ1(t) = Ex∼ρt [〈wt (x),HV (x)wt (x)〉] and ψ2(t) = Ex∼ρt

[
‖Jwt (x)‖2HS

]
.

where ρt = (φt )#µn, wt = −g ◦ (φt )
−1.

Step 3.a. Assuming ‖HV‖ ≤ M and k(., .) ≤ B:

ψ1(t) ≤ M‖g‖2L2(µn) ≤ MB2
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H
.

Step 3.b. Since ρt = (φt )#µn, wt = −g ◦ (φt )
−1,

ψ2(t) = Ex∼µn [‖Jwt ◦ φt (x)‖2HS] ≤ ‖Jg(x)‖2HS‖(Jφt )
−1(x)‖2op

≤ B2
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H
α2,

assuming ‖∇k(., .)‖ ≤ B and choosing γ ≤ f (α) with α > 1.
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From:
ϕ(γ) = ϕ(0) + γϕ′(0) +

∫ γ

0
(γ − t)ϕ′′(t)dt

we have:

KL(µn+1|π)− KL(µn|π) ≤ −γ‖Sµn∇ log
(µn

π

)
‖2H

+
γ2

2
(α2 + M)B2‖Sµn∇ log

(µn

π

)
‖2H.

Choosing γ small enough yields a descent lemma :

KL(µn+1|π)− KL(µn|π) ≤ −cγ
∥∥∥Sµn∇ log

(µn

π

)∥∥∥2

H︸ ︷︷ ︸
KSD2(µn|π)

.
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