Computation of optimal transport with finite volumes

Journées MAGA, 03/02/2022

Gabriele Todeschi
Ceremade-Inria MOKAPLAN team
in collaboration with Andrea Natale, Inria Lille

Dauphine | PSL*

Outline of the talk

\diamond Quadratic optimal transport problem in dynamical form
\diamond Finite volume discretization
\diamond Stability issues
\diamond Convergence results
\diamond Interior point strategy

Quadratic optimal transport problem

$\Omega \subset \mathbb{R}^{d}, \rho^{i n}, \rho^{f} \in \mathcal{P}(\Omega)$
$\Pi\left(\rho^{\text {in }}, \rho^{f}\right)=\left\{\gamma \in \mathcal{P}(\Omega \times \Omega),\left(\pi_{1}\right)_{\#} \gamma=\rho^{\text {in }},\left(\pi_{2}\right)_{\#} \gamma=\rho^{f}\right\}$

$$
\inf _{\gamma \in \Pi\left(\rho^{i n}, \rho^{f}\right)} \int_{\Omega \times \Omega} \frac{1}{2}|\mathbf{x}-\mathbf{y}|^{2} \mathrm{~d} \gamma(\mathbf{x}, \mathbf{y})
$$

Quadratic optimal transport problem

$\Omega \subset \mathbb{R}^{d}, \rho^{i n}, \rho^{f} \in \mathcal{P}(\Omega)$
$\Pi\left(\rho^{i n}, \rho^{f}\right)=\left\{\gamma \in \mathcal{P}(\Omega \times \Omega),\left(\pi_{1}\right)_{\#} \gamma=\rho^{i n},\left(\pi_{2}\right)_{\# \gamma}=\rho^{f}\right\}$

$$
\mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right):=\inf _{\gamma \in \Pi\left(\rho^{i n}, \rho^{f}\right)} \int_{\Omega \times \Omega} \frac{1}{2}|\mathbf{x}-\mathbf{y}|^{2} \mathrm{~d} \gamma(\mathbf{x}, \mathbf{y})
$$

$\mathcal{W}_{2}: \mathcal{P}(\Omega) \times \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{+}$is a distance

McCann's displacement interpolation

Assume $\rho^{\text {in }}$ a.c.
$\exists \mathrm{T}$ such that

$$
\mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)=\int_{\Omega} \frac{1}{2}|\mathbf{x}-\mathrm{T}(x)|^{2} \mathrm{~d} \rho^{i n}=\inf _{\mathrm{T} \mid \mathrm{T}_{\#} \rho^{i n}=\rho^{f}} \int_{\Omega} \frac{1}{2}|\mathrm{x}-\mathrm{T}(x)|^{2} \mathrm{~d} \rho^{i n}
$$

$$
\gamma=(\mathrm{Id}, \mathrm{~T})_{\#} \rho^{i n}
$$

McCann's displacement interpolation

Assume $\rho^{\text {in }}$ a.c.
$\exists \mathrm{T}$ such that

$$
\mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)=\int_{\Omega} \frac{1}{2}|\mathbf{x}-\mathrm{T}(x)|^{2} \mathrm{~d} \rho^{i n}=\inf _{\mathrm{T} \mid \mathrm{T} \# \rho^{i n}=\rho^{f}} \int_{\Omega} \frac{1}{2}|\mathbf{x}-\mathrm{T}(x)|^{2} \mathrm{~d} \rho^{i n}
$$

$\gamma=(\mathrm{Id}, \mathrm{T})_{\#} \rho^{\mathrm{in}}$
Interpolation: $\rho_{t}=\left(\mathrm{T}_{t}\right)_{\#} \rho^{\text {in }}$ where $\mathrm{T}_{t}=(1-t) \mathrm{Id}+t \mathrm{~T}$

Benamou-Brenier dynamical formulation ${ }^{1}$

$$
\mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right):=\inf _{(\rho, \boldsymbol{m}) \in \mathcal{C}} \int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{dxdt}
$$

where \mathcal{C} is the convex subset of (ρ, \boldsymbol{m}) such that

$$
\left\{\begin{array} { l l }
{ \partial _ { t } \rho + \nabla \cdot \boldsymbol { m } = 0 } & { \text { in } [0 , 1] \times \Omega } \\
{ \boldsymbol { m } \cdot \boldsymbol { n } = 0 } & { \text { on } [0 , 1] \times \partial \Omega }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
\rho(0, \cdot)=\rho^{i n} \\
\rho(1, \cdot)=\rho^{f}
\end{array}\right.\right.
$$

[^0]
Benamou-Brenier dynamical formulation ${ }^{1}$

$$
\mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right):=\inf _{(\rho, \boldsymbol{m}) \in \mathcal{C}} \int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{dxdt}
$$

where \mathcal{C} is the convex subset of (ρ, \boldsymbol{m}) such that

$$
\left\{\begin{array} { l l }
{ \partial _ { t } \rho + \nabla \cdot \boldsymbol { m } = 0 } & { \text { in } [0 , 1] \times \Omega } \\
{ \boldsymbol { m } \cdot \boldsymbol { n } = 0 } & { \text { on } [0 , 1] \times \partial \Omega }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
\rho(0, \cdot)=\rho^{i n} \\
\rho(1, \cdot)=\rho^{f}
\end{array}\right.\right.
$$

$\frac{|\boldsymbol{b}|^{2}}{2 a}:= \begin{cases}\frac{|\boldsymbol{b}|^{2}}{2 a} & \text { if } a>0 \\ 0 & \text { if } a=0, \boldsymbol{b}=0 \\ +\infty & \text { else }\end{cases}$
Convex optimization problem with linear constraints
Non-smooth

[^1]
Benamou-Brenier dynamical formulation

Strong duality \longrightarrow infsup optimization problem

Optimality conditions: continuity +HJ equation

$$
\left\{\begin{array} { l }
{ \partial _ { t } \rho - \nabla \cdot (\rho \nabla \phi) = 0 } \\
{ \partial _ { t } \phi - \frac { 1 } { 2 } | \nabla \phi | ^ { 2 } \leq 0 }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
\rho(0, \cdot)=\rho^{i n} \\
\rho(1, \cdot)=\rho^{f}
\end{array}\right.\right.
$$

and $\boldsymbol{m}=-\rho \nabla \phi, \rho \nabla \phi \cdot \boldsymbol{n}=0$ on $\partial \Omega$

HJ equation \rightarrow conservation of momentum \Longrightarrow zero acceleration

BB interpolation coincides with McCann's: Eulerian formulation vs Lagrangian

Bibliography

Linear programming:
Oberman, Ruan, 2015
Schmitzer, 2016
Semi-discrete optimal transport:
Merigot, 2011
Gallouët, Mérigot, 2018
Lévy, Schwindt, 2018
Mérigot, Mayron, Thibert, 2018
Entropic regularization:
Cuturi, 2013
Peyré, 2015
Monge-Ampère equation:
Benamou, Collino, Mirebeau, 2016
Bonnet, Mirebeau, 2021

Eulerian schemes:

Finite elements:
Benamou, Carlier, 2015
Lavenant, Claici, Chien, Solomon, 2018
Finite difference:
Papadakis, Peyré, Oudet, 2014
Carrilo, Kraig, Wang, Wei, 2021
Finite volumes:
Erbar, Rumpf, Schmitzer, Simon, 2020
Gladbach, Kopfer, Maas, 2020

Compute the transport map \rightarrow reconstruct trajectories of particles

Compute directly the interpolation
\rightarrow reconstruct density and velocity fields

Objectives

AIM: Solve the quadratic OT problem and compute the related interpolation with the perspective of physics based applications
$\diamond B B$ formulation:

- Continuum mechanics form
- Easy to generalize: penalization of the density curve, non-convex domains, anisotropy, obstacles,...
\diamond Finite Volumes:
- Preserve the conservative structure
- Handle complex domains
\diamond Interior Point Method: Accuracy and efficiency

Discretization of $[0,1] \times \Omega$

$N+1$ subintervals of length $\Delta t=\frac{1}{N+1}$

Admissible mesh for TPFA scheme:

- \mathcal{T} set of control volumes K
- Σ set of edges σ
- $\left(\mathbf{x}_{K}\right)_{K \in \mathcal{T}}$ set of cell centers

Main assumption: $\mathbf{x}_{K}-\mathbf{x}_{L} \perp \sigma$ for $\sigma=K \mid L \in \Sigma$

Discrete continuity equation

$$
\begin{aligned}
& m_{K}=|K|, m_{\sigma}=|\sigma| \\
& \partial_{t} \rho+\nabla \cdot \boldsymbol{m}=0 \quad \longrightarrow \quad \frac{\rho_{K}^{i}-\rho_{K}^{i-1}}{\Delta t} m_{K}+\sum_{\sigma \in \Sigma_{K}} F_{K, \sigma}^{i-\frac{1}{2}} m_{\sigma}=0, \quad \forall i, K
\end{aligned}
$$

Discrete continuity equation

$$
\begin{array}{ll}
m_{K}=|K|, m_{\sigma}=|\sigma| \\
& \partial_{t} \rho+\nabla \cdot \boldsymbol{m}=0 \quad \longrightarrow \quad \frac{\rho_{K}^{i}-\rho_{K}^{i-1}}{\Delta t} m_{K}+\sum_{\sigma \in \Sigma_{K}} F_{K, \sigma}^{i-\frac{1}{2}} m_{\sigma}=0, \quad \forall i, K \\
F_{K, \sigma}^{i-\frac{1}{2}}+F_{L, \sigma}^{i-\frac{1}{2}}=0, & \text { if } \sigma \text { internal } \quad \Longrightarrow \quad \sum_{K} \rho_{K}^{i} m_{K}=\sum_{K} \rho_{K}^{i-1} m_{K} \\
F_{K, \sigma}^{i-\frac{1}{2}}=0, & \text { if } \sigma \text { external }
\end{array}
$$

Discrete kinetic energy

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{dxdt} \approx ?
$$

Reconstruction in time
Reconstruction in space
Compensation of one directional discretization of \boldsymbol{m}

Time average

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{d} \mathbf{x d t} \approx \sum_{i=1}^{N+1} \Delta t \int_{\Omega} \frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{2 \rho^{i-\frac{1}{2}}}
$$

$\frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{\rho^{i-\frac{1}{2}}}$ finite $\Longrightarrow \boldsymbol{m}^{i-\frac{1}{2}}=\rho^{i-\frac{1}{2}} \boldsymbol{v}$

$$
F^{i-\frac{1}{2}}
$$

Time average

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{d} \mathbf{x d t} \approx \sum_{i=1}^{N+1} \Delta t \int_{\Omega} \frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{2 \rho^{i-\frac{1}{2}}}
$$

$\frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{\rho^{i-\frac{1}{2}}}$ finite $\Longrightarrow \boldsymbol{m}^{i-\frac{1}{2}}=\rho^{i-\frac{1}{2}} \boldsymbol{v}$
If e.g. $\rho^{i-\frac{1}{2}}=\rho^{i-1}$:

$$
\begin{aligned}
& \frac{\rho^{i}-\rho^{i-1}}{\Delta t}+\nabla \cdot \rho^{i-1} \boldsymbol{v}^{i-\frac{1}{2}}=0, \quad \forall i \\
& \frac{\rho^{1}-\rho^{i n}}{\Delta t}+\nabla \cdot \rho^{i n} \boldsymbol{v}^{1-\frac{1}{2}}=0
\end{aligned}
$$

\nexists a (finite) solution if $\operatorname{supp}\left(\rho^{f}\right) \nsubseteq \operatorname{supp}\left(\rho^{\text {in }}\right)$

Time average

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{d} \mathbf{x d t} \approx \sum_{i=1}^{N+1} \Delta t \int_{\Omega} \frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{2\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right)}
$$

$\frac{\left|\boldsymbol{m}^{i-\frac{1}{2}}\right|^{2}}{\rho^{i-\frac{1}{2}}}$ finite $\Longrightarrow \boldsymbol{m}^{i-\frac{1}{2}}=\rho^{i-\frac{1}{2}} \boldsymbol{v}$
If e.g. $\rho^{i-\frac{1}{2}}=\rho^{i-1}$:

$$
\begin{aligned}
& \frac{\rho^{i}-\rho^{i-1}}{\Delta t}+\nabla \cdot \rho^{i-1} \boldsymbol{v}^{i-\frac{1}{2}}=0, \quad \forall i \\
& \frac{\rho^{1}-\rho^{i n}}{\Delta t}+\nabla \cdot \rho^{i n} \boldsymbol{v}^{1-\frac{1}{2}}=0
\end{aligned}
$$

\nexists a (finite) solution if $\operatorname{supp}\left(\rho^{f}\right) \nsubseteq \operatorname{supp}\left(\rho^{\text {in }}\right)$
Arithmetic average: $\rho^{i-\frac{1}{2}}=\frac{\rho^{i}+\rho^{i-1}}{2}$
Harmonic, logarithmic or geometric averages are NOT suited

Space average

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{d} \mathbf{x d t} \approx \sum_{i=1}^{N+1} \Delta t \sum_{\sigma \in \Sigma} \frac{\left(F_{\sigma}^{i-\frac{1}{2}}\right)^{2}}{2 \mathcal{R}_{\sigma}\left(\frac{\rho^{i}+\boldsymbol{\rho}^{i-1}}{2}\right)} m_{\sigma} d_{\sigma}
$$

Averages of neighboring cell values $\mathcal{R}_{\sigma}(\boldsymbol{\rho})=f\left(\rho_{K}, \rho_{L}\right)$

Component-wise convex, positive
Examples: weighted arithmetic and harmonic averages

$$
\begin{aligned}
\mathcal{R}_{\sigma}(\boldsymbol{\rho}) & =\lambda_{K, \sigma} \rho_{K}+\lambda_{L, \sigma} \rho_{L} \\
\mathcal{R}_{\sigma}(\boldsymbol{\rho}) & =\frac{\rho_{K} \rho_{L}}{\lambda_{L, \sigma} \rho_{K}+\lambda_{K, \sigma} \rho_{L}}
\end{aligned}
$$

$\forall \sigma, \lambda_{K, \sigma}+\lambda_{L, \sigma}=1$

Counterexample ${ }^{1}$

$\Delta_{x} \in \mathbb{R}_{+}, r \in(0,1)$

$\left(\lambda_{K, \sigma}, \lambda_{L, \sigma}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$
${ }^{1}$ Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport,2020

Counterexample ${ }^{1}$

$\Delta_{x} \in \mathbb{R}_{+}, r \in(0,1)$

$\left(\lambda_{K, \sigma}, \lambda_{L, \sigma}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$

$$
t=0
$$

$t=0.5$

$t=1$

The discrete solution converges to something cheaper!

[^2]
Counterexample ${ }^{1}$

$\Delta_{x} \in \mathbb{R}_{+}, r \in(0,1)$

$\left(\lambda_{K, \sigma}, \lambda_{L, \sigma}\right)=\left(\frac{d_{K, \sigma}}{d_{\sigma}}, \frac{d_{L, \sigma}}{d_{\sigma}}\right)$

[^3]
Counterexample ${ }^{1}$

$$
\Delta_{x} \in \mathbb{R}_{+}, r \in(0,1)
$$

$\left(\lambda_{K, \sigma}, \lambda_{L, \sigma}\right)=\left(\frac{d_{K, \sigma}}{d_{\sigma}}, \frac{d_{L, \sigma}}{d_{\sigma}}\right)$

$t=0$

$t=0.5$

$t=1$

[^4]
Necessary condition

Asymptotic anisotropy condition

Given a (admissible) mesh and the weights $\left(\lambda_{K, \sigma}\right)_{(K, \sigma) \in \mathcal{T} \times \Sigma}$, there exists $\eta, \eta \rightarrow 0$ with $h=\max (\operatorname{diam}(K)) \rightarrow 0$, such that

$$
\sum_{\sigma \in \Sigma_{K}}\left(\lambda_{K, \sigma} m_{\sigma} d_{\sigma}\right) \boldsymbol{n}_{K, \sigma} \otimes \boldsymbol{n}_{K, \sigma} \leq m_{K}(1+\eta) \mathrm{Id}, \quad \forall K \in \mathcal{T}
$$

If cell centers are circumcenters:

$$
\left(\lambda_{K, \sigma}, \lambda_{L, \sigma}\right)=\left(\frac{d_{K, \sigma}}{d_{\sigma}}, \frac{d_{L, \sigma}}{d_{\sigma}}\right), \quad \forall \sigma
$$

\Longrightarrow asymptotic anisotropy guaranteed with $\eta=0$

Flux compensation

$$
\int_{0}^{1} \int_{\Omega} \frac{\mid \boldsymbol{m}(t, \mathbf{x}))\left.\right|^{2}}{2 \rho(t, \mathbf{x})} \mathrm{dxdt} \approx \sum_{i=1}^{N+1} \Delta t \sum_{\sigma \in \Sigma} \frac{\left(F_{\sigma}^{i-\frac{1}{2}}\right)^{2}}{2 \mathcal{R}_{\sigma}\left(\frac{\rho^{i}+\boldsymbol{\rho}^{i-1}}{2}\right)} m_{\sigma} d_{\sigma}
$$

$\left(F_{\sigma}^{i-\frac{1}{2}}\right)^{2} \approx\left|\boldsymbol{m}^{i-\frac{1}{2}} \cdot \boldsymbol{n}_{K, \sigma}\right|^{2}$
\boldsymbol{m} is approximated along only one direction
We need to compensate for the other $d-1$
We increase the measure by d times:

$$
d m_{\Delta_{\sigma}}=m_{\sigma} d_{\sigma}
$$

Discrete kinetic energy

$$
\mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})=\left\{\begin{array}{lr}
\sum_{i=1}^{N+1} \Delta t \sum_{\sigma \in \Sigma} \frac{\left(F_{\sigma}^{i-\frac{1}{2}}\right)^{2}}{2 \mathcal{R}_{\sigma}\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right)} m_{\sigma} d_{\sigma} & \text { if } \rho_{K}^{i} \geq 0 \\
+\infty & \text { else }
\end{array}\right.
$$

Convex and lower semi-continuous

Discrete optimal transport problem

$\rho^{i n}, \rho^{f} \in \mathbb{R}_{+}^{\mathcal{T}}$ with the same mass, $\sum_{K} \rho^{i n} m_{K}=\sum_{K} \rho^{f} m_{K}$
Discrete optimal transport problem:

$$
\inf _{(\rho, \boldsymbol{F}) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})
$$

$\mathcal{C}_{N, \mathcal{T}}:(\rho, \boldsymbol{F})$ satisfying the discrete continuity equation with $\rho^{0}=\rho^{i n}, \rho^{N+1}=\rho^{f}$

Discrete optimal transport problem

$\rho^{i n}, \rho^{f} \in \mathbb{R}_{+}^{\mathcal{T}}$ with the same mass, $\sum_{K} \rho^{i n} m_{K}=\sum_{K} \rho^{f} m_{K}$
Discrete optimal transport problem:

$$
\inf _{(\rho, F) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})
$$

$\mathcal{C}_{N, \mathcal{T}}:(\boldsymbol{\rho}, \boldsymbol{F})$ satisfying the discrete continuity equation with $\rho^{0}=\rho^{i n}, \rho^{N+1}=\rho^{f}$
Well-posed convex optimization problem

Discrete optimal transport problem

$\rho^{i n}, \rho^{f} \in \mathbb{R}_{+}^{\mathcal{T}}$ with the same mass, $\sum_{K} \rho^{i n} m_{K}=\sum_{K} \rho^{f} m_{K}$
Discrete optimal transport problem:

$$
W_{N, \mathcal{T}}^{2}\left(\boldsymbol{\rho}^{i n}, \rho^{f}\right):=\inf _{(\rho, \boldsymbol{F}) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})
$$

$\mathcal{C}_{N, \mathcal{T}}:(\boldsymbol{\rho}, \boldsymbol{F})$ satisfying the discrete continuity equation with $\rho^{0}=\rho^{i n}, \rho^{N+1}=\rho^{f}$
Well-posed convex optimization problem

Discrete optimal transport problem

$\rho^{i n}, \rho^{f} \in \mathbb{R}_{+}^{\mathcal{T}}$ with the same mass, $\sum_{K} \rho^{i n} m_{K}=\sum_{K} \rho^{f} m_{K}$
Discrete optimal transport problem:

$$
W_{N, \mathcal{T}}^{2}\left(\rho^{i n}, \rho^{f}\right):=\inf _{(\rho, F) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})
$$

$\mathcal{C}_{N, \mathcal{T}}:(\boldsymbol{\rho}, \boldsymbol{F})$ satisfying the discrete continuity equation with $\rho^{0}=\rho^{i n}, \rho^{N+1}=\rho^{f}$
Well-posed convex optimization problem
Strong duality \Longrightarrow saddle point in $\rho, \phi \in\left[\mathbb{R}^{\mathcal{T}}\right]^{N} \times\left[\mathbb{R}^{\mathcal{T}}\right]^{N+1}$ with

$$
\boldsymbol{F}^{i-\frac{1}{2}}=-\mathcal{R}_{\Sigma}\left(\frac{\rho^{i}+\boldsymbol{\rho}^{i-1}}{2}\right) \odot \nabla_{\Sigma} \phi^{i-\frac{1}{2}}
$$

Discrete optimal transport problem

$\rho^{i n}, \rho^{f} \in \mathbb{R}_{+}^{\mathcal{T}}$ with the same mass, $\sum_{K} \rho^{i n} m_{K}=\sum_{K} \rho^{f} m_{K}$
Discrete optimal transport problem:

$$
W_{N, \mathcal{T}}^{2}\left(\rho^{i n}, \rho^{f}\right):=\inf _{(\rho, F) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})
$$

$\mathcal{C}_{N, \mathcal{T}}:(\rho, \boldsymbol{F})$ satisfying the discrete continuity equation with $\rho^{0}=\rho^{i n}, \rho^{N+1}=\rho^{f}$
Well-posed convex optimization problem
Strong duality \Longrightarrow saddle point in $\rho, \phi \in\left[\mathbb{R}^{\mathcal{T}}\right]^{N} \times\left[\mathbb{R}^{\mathcal{T}}\right]^{N+1}$ with

$$
\boldsymbol{F}^{i-\frac{1}{2}}=-\mathcal{R}_{\Sigma}\left(\frac{\boldsymbol{\rho}^{i}+\boldsymbol{\rho}^{i-1}}{2}\right) \odot \nabla_{\Sigma} \boldsymbol{\phi}^{i-\frac{1}{2}}
$$

Non-smooth, $d+1$ dimensional, positivity constraint

Oscillations

Oscillations

Infsup type instabilities on the density

Oscillations

Infsup type instabilities on the density
OT does not provide any regularity to the interpolating density

Oscillations

Infsup type instabilities on the density
OT does not provide any regularity to the interpolating density
However, L^{p} norms are convex along the interpolation:

$$
\left\|\rho_{t}\right\|_{L^{p}}^{p} \leq(1-t)\left\|\rho^{i n}\right\|_{L^{p}}^{p}+t\left\|\rho^{f}\right\|_{L^{p}}^{p}
$$

Oscillations

Do not depend on the time refinement

Oscillations

Harmonic average

Do not depend on the time refinement
Depend on the reconstruction chosen

Oscillations

Linear average

Do not depend on the time refinement
Depend on the reconstruction chosen
The grid influences the oscillations, they disappear on cartesian grids

Oscillations

Linear average

Do not depend on the time refinement
Depend on the reconstruction chosen
The grid influences the oscillations, they disappear on cartesian grids
More severe/persistent with mass compression and tend to disappear on pure translations

Oscillations

Linear average

Do not depend on the time refinement
Depend on the reconstruction chosen
The grid influences the oscillations, they disappear on cartesian grids
More severe/persistent with mass compression and tend to disappear on pure translations

Not limited to the FV discretization ${ }^{1}$
${ }^{1}$ A. Natale, G. Todeschi, A mixed finite element discretization of optimal transport, 2021

Nested discretization

We enrich the space of discrete potentials to overcome the problem

Two nested discretizations of Ω
$\mathcal{B}_{N, \mathcal{T}}$ and the continuity equation are defined on the finer grid
The density is discretized on the coarser grid and injected in the finer space

Enriched scheme

Enriched scheme

The oscillations are softened
Computationally the scheme is more expensive (but the perfomance of the discrete solver improves)

Convergence results

Non enriched case [Lavenant,2021]:
$(\boldsymbol{\rho}, \boldsymbol{F}) \xrightarrow{\Delta t, h \rightarrow 0}(\rho, \boldsymbol{m})$ weakly and $\mathcal{W}_{N, \mathcal{T}}^{2}\left(\boldsymbol{\rho}^{i n}, \boldsymbol{\rho}^{f}\right) \xrightarrow{\Delta t, h \rightarrow 0} \mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)$

Convergence results

Non enriched case [Lavenant,2021]:

$$
(\boldsymbol{\rho}, \boldsymbol{F}) \xrightarrow{\Delta t, h \rightarrow 0}(\rho, \boldsymbol{m}) \text { weakly and } \mathcal{W}_{N, \mathcal{T}}^{2}\left(\boldsymbol{\rho}^{i n}, \boldsymbol{\rho}^{f}\right) \xrightarrow{\Delta t, h \rightarrow 0} \mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)
$$

Theorem

Given a smooth solution (ϕ, ρ) with ρ uniformly greater than zero:

- $\mathcal{W}_{N, \mathcal{T}}^{2}\left(\rho^{i n}, \rho^{f}\right) \xrightarrow{\Delta t, h \rightarrow 0} \mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)$ with order at least one
- $(\boldsymbol{\rho}, \boldsymbol{F}) \xrightarrow{\Delta t, h \rightarrow 0}(\rho, \boldsymbol{m})$ weakly

Convergence results

Non enriched case [Lavenant,2021]:

$$
(\boldsymbol{\rho}, \boldsymbol{F}) \xrightarrow{\Delta t, h \rightarrow 0}(\rho, \boldsymbol{m}) \text { weakly and } \mathcal{W}_{N, \mathcal{T}}^{2}\left(\boldsymbol{\rho}^{i n}, \boldsymbol{\rho}^{f}\right) \xrightarrow{\Delta t, h \rightarrow 0} \mathcal{W}_{2}^{2}\left(\rho^{i^{i n}}, \rho^{f}\right)
$$

Theorem

Given a smooth solution (ϕ, ρ) with ρ uniformly greater than zero:

- $\mathcal{W}_{N, \mathcal{T}}^{2}\left(\rho^{i n}, \rho^{f}\right) \xrightarrow{\Delta t, h \rightarrow 0} \mathcal{W}_{2}^{2}\left(\rho^{i n}, \rho^{f}\right)$ with order at least one
- $(\boldsymbol{\rho}, \boldsymbol{F}) \xrightarrow{\Delta t, h \rightarrow 0}(\rho, \boldsymbol{m})$ weakly
- Obtained constructing competitors in the discrete problem
- Holds in both the enriched and non-enriched case

Convergence tests: translation

Exact solution:

$$
\begin{aligned}
& \rho(t, x, y)=\left(1+\cos \left(\frac{10^{2} \pi}{3^{2}}\left|\mathbf{x}-\mathbf{x}_{t}\right|^{2}\right)\right) \mathbb{1}_{\left|\mathbf{x}-\mathbf{x}_{t}\right| \leq \frac{3}{10}}, \mathbf{x}_{t}=\left(\frac{3}{10}+\frac{2}{5} t, \frac{3}{10}+\frac{2}{5} t\right) \\
& \phi(t, x, y)=\frac{2}{5} x+\frac{2}{5} y-\frac{4}{25} t
\end{aligned}
$$

Convergence tests: compression

Exact solution:

$$
\begin{aligned}
\rho(t, x, y) & =\frac{1}{t(c-1)+1}\left(1+\cos \left(\frac{2 \pi}{t(c-1)+1}\left(x-\frac{1}{2}\right)\right)\right) \mathbf{1}_{\left|x-\frac{1}{2}\right| \leq \frac{t(c-1)+1}{2}} \\
\phi(t, x, y) & =\frac{1}{2} \frac{c-1}{t(c-1)+1}\left(x-\frac{1}{2}\right)^{2}
\end{aligned}
$$

Solution of the optimization problem

Usually solved using primal-dual/proximal splitting optimization techniques ${ }^{1234}$
Projection onto the parabola by rewriting the kinetic energy as

$$
\frac{|\boldsymbol{m}(t, \mathbf{x})|^{2}}{2 \rho(t, \mathbf{x})}:=\sup _{a+\frac{\mid \boldsymbol{b}^{2}}{2} \leq 0} a \rho(t, x)+\boldsymbol{b} \cdot \boldsymbol{m}(t, \mathbf{x})= \begin{cases}\frac{|\boldsymbol{b}|^{2}}{2 a} & \text { if } a>0 \\ 0 & \text { if } a=0, \boldsymbol{b}=0 \\ +\infty & \text { else }\end{cases}
$$

[^5]
Solution of the optimization problem

Usually solved using primal-dual/proximal splitting optimization techniques ${ }^{1234}$
Projection onto the parabola by rewriting the kinetic energy as

$$
\frac{|\boldsymbol{m}(t, \mathbf{x})|^{2}}{2 \rho(t, \mathbf{x})}:=\sup _{a+\frac{|\boldsymbol{b}|^{2}}{2} \leq 0} a \rho(t, x)+\boldsymbol{b} \cdot \boldsymbol{m}(t, \mathbf{x})= \begin{cases}\frac{|\boldsymbol{b}|^{2}}{2 a} & \text { if } a>0 \\ 0 & \text { if } a=0, \boldsymbol{b}=0 \\ +\infty & \text { else }\end{cases}
$$

- NOT flexible to adapt to the discretization
- Efficient only as long as cartesian grids are used and low accuracy is required
- Suffer the lack of smoothness of the problem

[^6]
Interior point strategy

Perturb the problem with a barrier function: $\mu \in \mathbb{R}_{+}$

$$
\inf _{(\rho, \boldsymbol{F}) \in \mathcal{C}_{N, \mathcal{T}}} \mathcal{B}_{N, \mathcal{T}}(\boldsymbol{\rho}, \boldsymbol{F})-\mu \sum_{i} \Delta t \sum_{K \in \mathcal{T}} \log \left(\rho_{K}\right) m_{K}
$$

The minimizer is strictly positive and the problem smooth

Interior point strategy

Perturb the problem with a barrier function: $\mu \in \mathbb{R}_{+}$

$$
\inf _{(\rho, \boldsymbol{F}) \in \mathcal{C}_{N}, \mathcal{T}} \mathcal{B}_{N, \mathcal{T}}(\rho, \boldsymbol{F})-\mu \sum_{i} \Delta t \sum_{K \in \mathcal{T}} \log \left(\rho_{K}\right) m_{K}
$$

The minimizer is strictly positive and the problem smooth

Theorem

The solution $\left(\rho^{\mu}, \boldsymbol{F}^{\mu}\right)$ satisfies:

- $\exists C>0$ such that $\rho^{\mu} \geq C \mu$
- $\left(\boldsymbol{\rho}^{\mu}, \boldsymbol{F}^{\mu}\right) \rightarrow(\boldsymbol{\rho}, \boldsymbol{F})$ solution of the unperturbed problem for $\mu \rightarrow 0$

The smaller μ, the more difficult is the problem

Newton method

Continuation method: solve a sequence of perturbed problems with $\mu \rightarrow 0$
Optimize from the interior of the domain

Newton method

Continuation method: solve a sequence of perturbed problems with $\mu \rightarrow 0$
Optimize from the interior of the domain
Optimality conditions: unperturbed problem

$$
\left\{\begin{array}{l}
\frac{\rho^{i}-\rho^{i-1}}{\Delta t}-\operatorname{div} \mathcal{T}\left(\mathcal{R}_{\Sigma}\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right) \odot \nabla_{\Sigma} \phi^{k}\right)=0 \\
\frac{\phi^{i+1}-\phi^{i}}{\Delta t}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i}\left(\nabla_{\Sigma} \phi^{k}\right)^{2}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i+1}\left(\nabla_{\Sigma} \phi^{i+1}\right)^{2} \leq 0
\end{array}\right.
$$

Newton method

Continuation method: solve a sequence of perturbed problems with $\mu \rightarrow 0$
Optimize from the interior of the domain
Optimality conditions: unperturbed problem

$$
\left\{\begin{array}{l}
\frac{\rho^{i}-\rho^{i-1}}{\Delta t}-\operatorname{div}_{\mathcal{T}}\left(\mathcal{R}_{\Sigma}\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right) \odot \nabla_{\Sigma} \phi^{k}\right)=0 \\
\frac{\phi^{i+1}-\phi^{i}}{\Delta t}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i}\left(\nabla_{\Sigma} \phi^{k}\right)^{2}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i+1}\left(\nabla_{\Sigma} \phi^{i+1}\right)^{2}=-s^{i} \\
\rho^{i} \geq 0, s^{i} \geq 0, \rho^{i} \odot s^{i}=0
\end{array}\right.
$$

Newton method

Continuation method: solve a sequence of perturbed problems with $\mu \rightarrow 0$
Optimize from the interior of the domain
Optimality conditions: perturbed problem

$$
\left\{\begin{array}{l}
\frac{\rho^{i}-\rho^{i-1}}{\Delta t}-\operatorname{div} \mathcal{T}\left(\mathcal{R}_{\Sigma}\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right) \odot \nabla_{\Sigma} \phi^{k}\right)=0 \\
\frac{\phi^{i+1}-\phi^{i}}{\Delta t}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i}\left(\nabla_{\Sigma} \phi^{k}\right)^{2}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i+1}\left(\nabla_{\Sigma} \phi^{i+1}\right)^{2}=-s^{i} \\
\rho^{i} \odot s^{i}=\mu
\end{array}\right.
$$

Newton method

Continuation method: solve a sequence of perturbed problems with $\mu \rightarrow 0$
Optimize from the interior of the domain
Optimality conditions: perturbed problem

$$
\left\{\begin{array}{l}
\frac{\rho^{i}-\rho^{i-1}}{\Delta t}-\operatorname{div}_{\mathcal{T}}\left(\mathcal{R}_{\Sigma}\left(\frac{\rho^{i}+\rho^{i-1}}{2}\right) \odot \nabla_{\Sigma} \phi^{k}\right)=0 \\
\frac{\phi^{i+1}-\phi^{i}}{\Delta t}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i}\left(\nabla_{\Sigma} \phi^{k}\right)^{2}-\frac{1}{4} \mathcal{R}_{\mathcal{T}}^{i+1}\left(\nabla_{\Sigma} \phi^{i+1}\right)^{2}=-s^{i} \\
\boldsymbol{\rho}^{i} \odot s^{i}=\mu
\end{array}\right.
$$

Use a Newton scheme
The smoothness of the problem favors a good behavior

Algorithm

```
Algorithm: Interior point method
Given the starting point \(\left(\phi_{0}, \rho_{0}, s_{0}\right)\) and the parameters \(\mu_{0}>0, \theta \in(0,1), \varepsilon_{0}>0\);
while \(\delta_{0}>\varepsilon_{0}\) do
    \(\mu=\theta \mu\);
    while \(\delta_{\mu}>\varepsilon_{\mu}\) do
            compute Newton direction d;
            compute \(\alpha \in(0,1]\) such that \(\boldsymbol{\rho}+\alpha \boldsymbol{d}_{\rho}>0\) and \(\boldsymbol{s}+\alpha \boldsymbol{d}_{\boldsymbol{s}}>0\);
            update: \((\boldsymbol{\phi}, \boldsymbol{\rho}, \boldsymbol{s})=(\boldsymbol{\phi}, \boldsymbol{\rho}, \boldsymbol{s})+\alpha\left(\boldsymbol{d}_{\phi}, \boldsymbol{d}_{\boldsymbol{\rho}}, \boldsymbol{d}_{\boldsymbol{s}}\right)\);
            if \(n>n_{\max }\) or \(\alpha<\alpha_{\text {min }}\) then
                increase \(\mu\) and repeat from previous iteration;
            end
    end
end
    \(\theta\) decrease ratio for \(\mu\);
    \(\delta_{0}\) and \(\varepsilon_{0}\) error and tolerance on the real solution;
    \(\delta_{\mu}\) and \(\varepsilon_{\mu}\) error and tolerance on the perturbed solution;
```


Solution of linear systems

The complexity lies in the computation of linear systems

$$
\boldsymbol{d}^{\boldsymbol{k}}=-\boldsymbol{J}^{k} / \boldsymbol{f}^{k} \quad \boldsymbol{J}^{k}=\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right]
$$

$A=\partial_{\phi \phi}^{2} \mathcal{L}, B=\partial_{\rho \phi}^{2} \mathcal{L}, C=\partial_{\rho \rho}^{2} \mathcal{L}$

Solution of linear systems

The complexity lies in the computation of linear systems

$$
\boldsymbol{d}^{\boldsymbol{k}}=-\boldsymbol{J}^{k} / \boldsymbol{f}^{k} \quad \boldsymbol{J}^{k}=\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right]
$$

$A=\partial_{\phi \phi}^{2} \mathcal{L}, B=\partial_{\rho \phi}^{2} \mathcal{L}, C=\partial_{\rho \rho}^{2} \mathcal{L}$

A becomes singular for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$
C explodes for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$

Solution of linear systems

The complexity lies in the computation of linear systems
$\boldsymbol{d}^{\boldsymbol{k}}=-\boldsymbol{J}^{\boldsymbol{k}} / \boldsymbol{f}^{k}$

$$
J^{k}=\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right]
$$

$A=\partial_{\phi \phi}^{2} \mathcal{L}, B=\partial_{\rho \phi}^{2} \mathcal{L}, C=\partial_{\rho \rho}^{2} \mathcal{L}$

A becomes singular for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$
C explodes for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$
$\longrightarrow \quad J$ becomes ill-conditioned

Preconditioned iterative methods can deal with ill-conditioning

Solution of linear systems

The complexity lies in the computation of linear systems
$\boldsymbol{d}^{k}=-\boldsymbol{J}^{k} / \boldsymbol{f}^{k}$

$$
J^{k}=\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right]
$$

$A=\partial_{\phi \phi}^{2} \mathcal{L}, B=\partial_{\rho \phi}^{2} \mathcal{L}, C=\partial_{\rho \rho}^{2} \mathcal{L}$

A becomes singular for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$
C explodes for $\mu \rightarrow 0$ if $\rho^{\mu} \rightarrow 0$
$\longrightarrow J$ becomes ill-conditioned

Preconditioned iterative methods can deal with ill-conditioning
Difficulty to find good preconditioner due to interplay of time and space discretization ${ }^{1}$

[^7]
Perspectives

OT can be accurately and efficiently computed using FV and IP

Perspectives:

- Better understanding of the instability issues
- Improve the solution of linear systems
- Construct more general finite volume schemes able to deal with anisotropy and less regular grids

Thank you for your attention!

[^0]: ${ }^{1}$ Benamou and Brenier, 2000

[^1]: ${ }^{1}$ Benamou and Brenier, 2000

[^2]: ${ }^{1}$ Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport,2020

[^3]: ${ }^{1}$ Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport, 2020

[^4]: ${ }^{1}$ Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport, 2020

[^5]: ${ }^{1}$ Benamou, Brenier, 2000
 ${ }^{2}$ Papadakis, Peyré, Oudet, 2014
 ${ }^{3}$ Benamou, Carlier, 2015
 ${ }^{4}$ Natale, Todeschi, 2021

[^6]: ${ }^{1}$ Benamou, Brenier, 2000
 ${ }^{2}$ Papadakis, Peyré, Oudet, 2014
 ${ }^{3}$ Benamou, Carlier, 2015
 ${ }^{4}$ Natale, Todeschi, 2021

[^7]: ${ }^{1}$ Ongoing work with Enrico Facca, Inria Lille

