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Outline of the talk

� Quadratic optimal transport problem in dynamical form

� Finite volume discretization

� Stability issues

� Convergence results

� Interior point strategy
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Quadratic optimal transport problem

Ω ⊂ Rd , ρin, ρf ∈ P(Ω)

Π(ρin, ρf ) = {γ ∈ P(Ω× Ω), (π1)#γ = ρin, (π2)#γ = ρf }

inf
γ∈Π(ρin,ρf )

∫
Ω×Ω

1

2
|x− y|2 dγ(x, y)

W2 : P(Ω)× P(Ω)→ R+ is a distance
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McCann’s displacement interpolation

Assume ρin a.c.

∃T such that

W2
2 (ρin, ρf ) =

∫
Ω

1

2
|x− T(x)|2dρin = inf

T|T#ρ
in=ρf

∫
Ω

1

2
|x− T(x)|2dρin

γ = (Id,T)#ρ
in

Interpolation: ρt = (Tt)#ρ
in where Tt = (1− t)Id + tT
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Benamou-Brenier dynamical formulation1

W2
2 (ρin, ρf ) := inf

(ρ,m)∈C

∫ 1

0

∫
Ω

|m(t, x))|2

2ρ(t, x)
dxdt

where C is the convex subset of (ρ,m) such that{
∂tρ+∇ ·m = 0 in [0, 1]× Ω

m · n = 0 on [0, 1]× ∂Ω
with

{
ρ(0, ·) = ρin

ρ(1, ·) = ρf

|b|2
2a

:=


|b|2
2a

if a > 0

0 if a = 0, b = 0

+∞ else

Convex optimization problem with linear constraints

Non-smooth

1Benamou and Brenier, 2000
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Benamou-Brenier dynamical formulation

Strong duality −→ infsup optimization problem

Optimality conditions: continuity + HJ equation{
∂tρ−∇ · (ρ∇φ) = 0

∂tφ− 1
2
|∇φ|2 ≤ 0

with

{
ρ(0, ·) = ρin

ρ(1, ·) = ρf

and m = −ρ∇φ, ρ∇φ · n = 0 on ∂Ω

HJ equation → conservation of momentum =⇒ zero acceleration

BB interpolation coincides with McCann’s: Eulerian formulation vs Lagrangian
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Lévy, Schwindt, 2018
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

Compute the transport map
→ reconstruct trajectories

of particles



Compute directly the interpolation
→ reconstruct density and

velocity fields
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Objectives

AIM: Solve the quadratic OT problem and compute the related interpolation with the
perspective of physics based applications

� BB formulation:

◦ Continuum mechanics form

◦ Easy to generalize: penalization of the density curve, non-convex domains,
anisotropy, obstacles,...

� Finite Volumes:

◦ Preserve the conservative structure

◦ Handle complex domains

� Interior Point Method: Accuracy and efficiency
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Discretization of [0, 1]× Ω

N + 1 subintervals of length ∆t = 1
N+1

Admissible mesh for TPFA scheme:

◦ T set of control volumes K
◦ Σ set of edges σ
◦ (xK )K∈T set of cell centers

Main assumption: xK − xL ⊥ σ for σ = K |L ∈ Σ

xK

xL

K
L

σ

dσ

nK,σ
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Discrete continuity equation

ρK

FK,σ1

FK,σ3

FK,σ2

K
L

mK = |K |,mσ = |σ|

∂tρ+∇ ·m = 0 −→
ρiK − ρi−1

K

∆t
mK +

∑
σ∈ΣK

F
i− 1

2
K ,σ mσ = 0, ∀i ,K

F
i− 1

2
K ,σ + F

i− 1
2

L,σ = 0, if σ internal

F
i− 1

2
K ,σ = 0, if σ external

=⇒
∑
K

ρiKmK =
∑
K

ρi−1
K mK
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Discrete kinetic energy

ρK

FK,σ1

FK,σ3

FK,σ2

K
L

ρK

ρL

K
L

Rσ(ρ)

∫ 1

0

∫
Ω

|m(t, x))|2

2ρ(t, x)
dxdt ≈ ?

Reconstruction in time

Reconstruction in space

Compensation of one directional discretization of m
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Time average

∫ 1

0

∫
Ω

|m(t, x))|2

2ρ(t, x)
dxdt ≈

N+1∑
i=1

∆t

∫
Ω

|mi− 1
2 |2

2ρi−
1
2

|mi− 1
2 |2

ρ
i− 1

2
finite =⇒ mi− 1

2 = ρi−
1
2 v

If e.g. ρi−
1
2 = ρi−1:

ρi − ρi−1

∆t
+∇ · ρi−1v i− 1

2 = 0, ∀i

ρ1 − ρin

∆t
+∇ · ρinv 1− 1

2 = 0

@ a (finite) solution if supp(ρf ) * supp(ρin)

ρi−1 ρi

F i− 1
2

Arithmetic average: ρi−
1
2 = ρi+ρi−1

2

Harmonic, logarithmic or geometric averages are NOT suited
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Space average

∫ 1

0

∫
Ω

|m(t, x))|2

2ρ(t, x)
dxdt ≈

N+1∑
i=1

∆t
∑
σ∈Σ

(F
i− 1

2
σ )2

2Rσ(ρi+ρi−1

2
)
mσdσ

Averages of neighboring cell values
Rσ(ρ) = f (ρK , ρL)

Component-wise convex, positive

Examples: weighted arithmetic and harmonic
averages

Rσ(ρ) = λK ,σρK + λL,σρL

Rσ(ρ) =
ρKρL

λL,σρK + λK ,σρL

∀σ, λK ,σ + λL,σ = 1

ρK

ρL

K
L

Rσ(ρ)
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Counterexample1

∆x ∈ R+, r ∈ (0, 1)

∆x r∆x

(λK ,σ, λL,σ) = ( 1
2
, 1

2
)

1Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport, 2020
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Counterexample1

∆x ∈ R+, r ∈ (0, 1)

∆x r∆x

(λK ,σ, λL,σ) = ( 1
2
, 1

2
)

t = 0 t = 0.5 t = 1

The discrete solution converges to something cheaper!

1Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport, 2020
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Counterexample1

∆x ∈ R+, r ∈ (0, 1)

∆x r∆x

(λK ,σ, λL,σ) = (
dK,σ
dσ

,
dL,σ
dσ

)

xK

xL

K
L

dσ

dK,σ

dL,σ

1Gladbach, Kopfer, Maas, Scaling limits of discrete optimal transport, 2020
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Necessary condition

Asymptotic anisotropy condition

Given a (admissible) mesh and the weights (λK ,σ)(K ,σ)∈T ×Σ, there exists η, η → 0
with h = max(diam(K))→ 0, such that∑

σ∈ΣK

(λK ,σmσdσ)nK ,σ ⊗ nK ,σ ≤ mK (1 + η)Id, ∀K ∈ T

If cell centers are circumcenters:

(λK ,σ, λL,σ) = (
dK ,σ
dσ

,
dL,σ
dσ

), ∀σ

=⇒ asymptotic anisotropy guaranteed with η = 0
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Flux compensation

∫ 1

0

∫
Ω

|m(t, x))|2

2ρ(t, x)
dxdt ≈

N+1∑
i=1

∆t
∑
σ∈Σ

(F
i− 1

2
σ )2

2Rσ(ρi+ρi−1

2
)
mσdσ

(F
i− 1

2
σ )2 ≈ |mi− 1

2 · nK ,σ|2

m is approximated along only one direction

We need to compensate for the other d − 1

We increase the measure by d times:

dm∆σ = mσdσ

ρK

FK,σ1

FK,σ3

FK,σ2

K
L
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Discrete kinetic energy

BN,T (ρ,F ) =


N+1∑
i=1

∆t
∑
σ∈Σ

(F
i− 1

2
σ )2

2Rσ(ρi+ρi−1

2
)
mσdσ if ρiK ≥ 0

+∞ else

Convex and lower semi-continuous
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Discrete optimal transport problem

ρin,ρf ∈ RT+ with the same mass,
∑

K ρinmK =
∑

K ρfmK

Discrete optimal transport problem:

inf
(ρ,F )∈CN,T

BN,T (ρ,F )

CN,T : (ρ,F ) satisfying the discrete continuity equation with ρ0 = ρin,ρN+1 = ρf

Well-posed convex optimization problem

Strong duality =⇒ saddle point in ρ,φ ∈ [RT ]N × [RT ]N+1 with

F i− 1
2 = −RΣ

(ρi + ρi−1

2

)
�∇Σφ

i− 1
2

Non-smooth, d + 1 dimensional, positivity constraint
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Oscillations

L
in

ea
r

av
er

ag
e

Infsup type instabilities on the density

OT does not provide any regularity to the interpolating density

However, Lp norms are convex along the interpolation:

||ρt ||pLp ≤ (1− t)||ρin||pLp + t||ρf ||pLp
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Oscillations
L

in
ea

r
av

er
ag

e

Do not depend on the time refinement

Depend on the reconstruction chosen

The grid influences the oscillations, they disappear on cartesian grids

More severe/persistent with mass compression and tend to disappear on pure
translations

Not limited to the FV discretization1
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Do not depend on the time refinement

Depend on the reconstruction chosen

The grid influences the oscillations, they disappear on cartesian grids

More severe/persistent with mass compression and tend to disappear on pure
translations

Not limited to the FV discretization1

1A.Natale,G .Todeschi, A mixed finite element discretization of optimal transport, 2021
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Nested discretization

We enrich the space of discrete potentials to overcome the problem

xK′

xL′

K ′L′

K
L

Two nested discretizations of Ω

BN,T and the continuity equation are defined on the finer grid

The density is discretized on the coarser grid and injected in the finer space
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Enriched scheme
L

in
ea

r
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ag

e

The oscillations are softened

Computationally the scheme is more expensive (but the perfomance of the discrete
solver improves)
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Convergence results

Non enriched case [Lavenant,2021]:

(ρ,F )
∆t,h→0−−−−−→ (ρ,m) weakly and W 2

N,T (ρin,ρf )
∆t,h→0−−−−−→W2

2 (ρin, ρf )

Theorem

Given a smooth solution (φ, ρ) with ρ uniformly greater than zero:

◦ W 2
N,T (ρin,ρf )

∆t,h→0−−−−−→W2
2 (ρin, ρf ) with order at least one

◦ (ρ,F )
∆t,h→0−−−−−→ (ρ,m) weakly

◦ Obtained constructing competitors in the discrete problem

◦ Holds in both the enriched and non-enriched case
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◦ Obtained constructing competitors in the discrete problem

◦ Holds in both the enriched and non-enriched case
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Convergence tests: translation

10-2 10-1
10-5

10-4

10-3

10-2

10-1

lin
harm
lin, enriched
harm, enriched
order 1

10-2 10-1
10-2

10-1

100

lin
harm
lin, enriched
harm, enriched
order 1

Exact solution:

ρ(t, x , y) =
(

1 + cos
(

102π
32 |x− xt |2

))
1|x−xt |≤ 3

10
, xt =

(
3

10
+ 2

5
t, 3

10
+ 2

5
t
)

φ(t, x , y) = 2
5
x + 2

5
y − 4

25
t
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Convergence tests: compression

10-2 10-1

10-4

10-3

10-2

lin
harm
lin, enriched
harm, enriched
order 1

10-2 10-1
10-2

10-1

lin
harm
lin, enriched
harm, enriched
order 1

Exact solution:

ρ(t, x , y) = 1
t(c−1)+1

(
1 + cos

(
2π

t(c−1)+1

(
x − 1

2

)))
1|x− 1

2 |≤ t(c−1)+1
2

φ(t, x , y) = 1
2

c−1
t(c−1)+1

(
x − 1

2

)2
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Solution of the optimization problem

Usually solved using primal-dual/proximal splitting optimization techniques1234

Projection onto the parabola by rewriting the kinetic energy as

|m(t, x)|2

2ρ(t, x)
:= sup

a+
|b|2

2
≤0

aρ(t, x) + b ·m(t, x) =


|b|2
2a

if a > 0

0 if a = 0, b = 0

+∞ else

◦ NOT flexible to adapt to the discretization

◦ Efficient only as long as cartesian grids are used and low accuracy is required

◦ Suffer the lack of smoothness of the problem

1Benamou, Brenier, 2000
2Papadakis, Peyré, Oudet, 2014
3Benamou, Carlier, 2015
4Natale, Todeschi, 2021
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Interior point strategy

Perturb the problem with a barrier function: µ ∈ R+

inf
(ρ,F )∈CN,T

BN,T (ρ,F )−µ
∑
i

∆t
∑
K∈T

log(ρK )mK

The minimizer is strictly positive and the problem smooth

Theorem

The solution (ρµ,Fµ) satisfies:

◦ ∃C > 0 such that ρµ ≥ Cµ
◦ (ρµ,Fµ)→ (ρ,F ) solution of the unperturbed problem for µ→ 0

The smaller µ, the more difficult is the problem
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Newton method

Continuation method: solve a sequence of perturbed problems with µ→ 0

Optimize from the interior of the domain

Optimality conditions:

Use a Newton scheme

The smoothness of the problem favors a good behavior
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Newton method

Continuation method: solve a sequence of perturbed problems with µ→ 0

Optimize from the interior of the domain

Optimality conditions: unperturbed problem
ρi − ρi−1

∆t
− divT (RΣ(

ρi + ρi−1

2
)�∇Σφ

k) = 0,

φi+1 − φi

∆t
− 1

4
Ri
T (∇Σφ

k)2 − 1

4
Ri+1
T (∇Σφ

i+1)2 ≤ 0

Use a Newton scheme

The smoothness of the problem favors a good behavior
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Algorithm

Algorithm: Interior point method

Given the starting point (φ0,ρ0, s0) and the parameters µ0 > 0, θ ∈ (0, 1), ε0 > 0 ;
while δ0 > ε0 do

µ = θµ ;
while δµ > εµ do

compute Newton direction d ;
compute α ∈ (0, 1] such that ρ + αdρ > 0 and s + αd s > 0;
update: (φ,ρ, s) = (φ,ρ, s) + α(dφ, dρ, d s) ;
if n > nmax or α < αmin then

increase µ and repeat from previous iteration;
end

end

end
! θ decrease ratio for µ;
! δ0 and ε0 error and tolerance on the real solution;

! δµ and εµ error and tolerance on the perturbed solution;
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Solution of linear systems

The complexity lies in the computation of linear systems

d k = −Jk/f k

Jk =

[
A BT

B C

]
A = ∂2

φφL,B = ∂2
ρφL,C = ∂2

ρρL

A becomes singular for µ→ 0 if ρµ → 0

C explodes for µ→ 0 if ρµ → 0

−→ J becomes ill-conditioned

Preconditioned iterative methods can deal with ill-conditioning

Difficulty to find good preconditioner due to interplay of time and space discretization1
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d k = −Jk/f k

Jk =

[
A BT

B C

]
A = ∂2

φφL,B = ∂2
ρφL,C = ∂2

ρρL

A becomes singular for µ→ 0 if ρµ → 0

C explodes for µ→ 0 if ρµ → 0
−→ J becomes ill-conditioned

Preconditioned iterative methods can deal with ill-conditioning

Difficulty to find good preconditioner due to interplay of time and space discretization1

1Ongoing work with Enrico Facca, Inria Lille
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Perspectives

OT can be accurately and efficiently computed using FV and IP

Perspectives:

◦ Better understanding of the instability issues

◦ Improve the solution of linear systems

◦ Construct more general finite volume schemes able to deal with anisotropy and
less regular grids
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Thank you for your attention!
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