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Wasserstein distances and Wasserstein spaces — 1

Let’s start from Kantorovich optimal transport’ :

min { c(x,y)dy(x,y) : v €N(,v)},  (KP)
QxQ

Starting from the values (KP) we can define a set of distances over P(X),
in the following way : for any p € [1, +oo[ set

W,(1.v) = (min (KP) with c(x.y) = [x — y[?)"/".

Compared to LP distances between densities we can say that they are
“horizontal” instead of “vertical”.

xT(x) xT(x)

L. KANTOROVICH, On the transfer of masses, 1942.
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Wasserstein distances and Wasserstein spaces — 2

There is also a dynamical formulation whenever Q C R? is convex :

1
W‘f(,u,y):inf{/ /\vt\"ptdt D Op+V-(pv) =0, po=p,p1 =v}
0o Ja

This kinetic energy minimization is the so-called Benamou-Brenier formu-
lation, which is also a valuable tool for numerical computatlons

o EBBERBRBREEEOEO0

The measures p; which minimize the Benamou-Brenier formulation are
indeed constant-speed geodesics (they satisfy [ |v¢|Pdp, = WP(u,v) for
every t) connecting u to v and they have an explicit expression

=((1—t)id + tT)gp,
where T is the optimal transport map from p to v.

J.-D. BENAMOU, Y. BRENIER A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem, Numer. Math., 2000.
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Wasserstein distances and negative Sobolev norms

In the case p =1, i.e. ¢(x,y) = |x — y| the dual problem

sup{/tpdu+/1/}dy : + YP(y )<c(x,y)}. (DP)

becomes easier since we can restrict the maximization to ¢ € Lip; and
1 = —¢, so that we get

W) = sup{ [ sd(u—v) : 6 < Lipy()).
We then have

= ley < Wilo) e | [ ode—)

< IV WA (p, ).

This suggests a form of duality between W9 and W,. Can this be gene-
ralized ?

The general answer should be no : for ¢ < d Sobolev functions are not
continuous and cannot be integrated against arbitrary measures. But some
results can hold under additional assumptions on p_and/or v.
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Geodesic convexity and estimate for L° measures.

Given r > 1, set F,(p) := [, p(x)"dx. For every p > 1 and every r > 1,
F. is geodesically convex, i.e.
t— F.(p:) s convex

when p; is the constant-speed geodesic between two measures i and v.
Sending r — oo, we also have

[pelleee < max{[[pl[ee s [[v[[1o} -

We can then deduce

/¢dv—u) /dt/wpt /l/w-vtdpt,

hence, with p’ = p/(p — 1), |f we suppose j, v < C, we have

1/p ,
/ od (41— )| < Wy, / ( / |v¢*’dpt) < CYP Wiy, )| [V

Generalizations also exist using L norms : | [ ¢d(u — v)| < CY7 W, (u,)||V||1o
if |[pllers [lv]lr < Cand S+ 2+ 3 =14 .
G. LOEPER Uniqueness of the solution to the Vlasov-Poisson system with bounded

density, JMPA, 2006.
F. SANTAMBROGIO Optimal Transport for Applied Mathematicians; 2015.
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One-sided estimates (looking at grids)

What if p is nice and v is not, as it is the case when estimating the
difference fQ odx — % > d(x;), i.e. when discretizing integrals ?

The points x; are often taken on a regular grid of step N=1/¢ and all
Wasserstein distances W, (dx, & >_; 0x) are of order N=1/¢. We then look
at the case where p is very large, trying to obtain estimates with the
smallest possible norm on V. Let's take p = oo

Waeliv) = mindllx— yllimgy) = 7 € M)}
= min{||v||te : Oep+ V- (prve) = 0}.
We then have

| 9= )] < Watov / | 9ldoc = Weotu.v) [ [V ojam.

with m = fo pedt. What can we say about the integrability of m?
A simple scaling argument shows that, even in the worst case (v = dp),

’
we have ||p¢||r < (1 —t)~9"||p||rr. Hence, m € L" for every r < d".
F. SANTAMBROGIO Absolute continuity and summability of transport densities : simpler
proofs and new estimates, 2009.
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Sharp and ntz estimates — 1

From the previous estimate we easily obtain, for p > d

JRECE

Yet, for 4 = dx and v = &g, the measure m exploses at 0 as |x|1_d. This
is the limit behavior for not being in L9, But we can obtain better in
the class of Lorentz spaces LP9 if we find the Lorentz space to which m
belongs.

Lorentz summability of m was already considered by Dweik for transport
densities, who proved p € LP9 = m €, LP9 for r < d’ but did not consider
the limit case p = d’.

< Weol(p, )||V¢HLP 71Kl

S. DWEIK LP-9 estimates on the transport density, Comm. Pures Appl. An., 2019.
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Sharp and Lorentz estimates — 2

Let us recall the definition of Lorentz spaces and norms :
lul|oa 2 [[s = sl{]ul > s}H"P|l aqe. o).
In particular,
o0
[l =~ sups|{lul > s}V [|u]|pes ~/ [{lul > s}|"/Pds.
s 0

We can prove (LP9)" = LP9". Since |x|'~9 belongs to L9 > around the

origin, the conjecture was

/ngdxf/nd)dz/

S. STEINERBERGER On a Kantorovich-Rubinstein inequality, JMAA, 2021.

< C(d, ) Woo (11, V)|V B | o1
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The final result

We can prove
we LI = me 9

(with a small loss in the g-exponent, differently from the case r < d’). This
is sharp in the sense that for i = |x|*"9dx on B; we have u € L9 but
m & |x|*~9(1 — log(|x])) ¢ L9"->°. The result also applies to the transport
density, but sharpness is not clear.

Anyway, we obtain
/Qqﬁd(u*V) < ()|l o s Woo (s ) [V [ a1,

thus proving Steinerberger’s conjecture.
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Don't think I'm done, let me give some proofs
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Thanks for your attention
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