Inégalités optimales pour l'échantillonnement d'intégrales en termes de distances de Wasserstein et normes du gradient

Filippo Santambrogio

Institut Camille Jordan, Université Claude Bernard Lyon 1
 http://math.univ-lyon1.fr/~santambrogio/

Journées MAGA, Autrans, 4 février 2022

Wasserstein distances and Wasserstein spaces – 1

Let's start from Kantorovich optimal transport' :

$$\min \big\{ \int_{\Omega \times \Omega} c(x, y) d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \big\}, \qquad (KP)$$

Starting from the values **(KP)** we can define a set of distances over $\mathcal{P}(X)$, in the following way: for any $p \in [1, +\infty[$ set

$$W_p(\mu, \nu) = (\min (KP) \text{ with } c(x, y) = |x - y|^p)^{1/p}.$$

Compared to L^p distances between densities we can say that they are "horizontal" instead of "vertical".

L. KANTOROVICH, On the transfer of masses, 1942.

Wasserstein distances and Wasserstein spaces – 2

There is also a dynamical formulation whenever $\Omega \subset \mathbb{R}^d$ is convex :

$$W_{p}^{p}(\mu,\nu) = \inf \left\{ \int_{0}^{1} \int_{\Omega} |v_{t}|^{p} \rho_{t} dt : \partial_{t} \rho + \nabla \cdot (\rho v) = 0, \ \rho_{0} = \mu, \rho_{1} = \nu \right\}$$

This kinetic energy minimization is the so-called *Benamou-Brenier* formulation, which is also a valuable tool for numerical computations.

The measures ρ_t which minimize the Benamou-Brenier formulation are indeed constant-speed geodesics (they satisfy $\int |v_t|^p d\rho_t = W_p^p(\mu,\nu)$ for every t) connecting μ to ν and they have an explicit expression

$$\rho_t = ((1-t)id + tT)_{\#}\mu,$$

where T is the optimal transport map from μ to ν .

J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, *Numer. Math.*, 2000.

Wasserstein distances and negative Sobolev norms

In the case p = 1, i.e. c(x, y) = |x - y| the dual problem

$$\sup \big\{ \int_{\Omega} \varphi d\mu + \int_{\Omega} \psi d\nu \ : \ \varphi(x) + \psi(y) \le c(x,y) \big\}. \tag{DP}$$

becomes easier since we can restrict the maximization to $\phi \in \mathsf{Lip}_1$ and $\psi = -\phi$, so that we get

$$W_1(\mu,\nu) = \sup \big\{ \int_{\Omega} \phi d(\mu - \nu) : \phi \in \mathsf{Lip}_1(\Omega) \big\}.$$

We then have

$$||\mu-\nu||_{(\mathsf{Lip})'} \leq W_1(\mu,\nu)$$
 i.e. $\left|\int_{\Omega} \phi d(\mu-\nu)\right| \leq ||\nabla \phi||_{L^{\infty}} W_1(\mu,\nu).$

This suggests a form of duality between $W^{1,q}$ and W_p . Can this be generalized?

The general answer should be no : for $q \leq d$ Sobolev functions are not continuous and cannot be integrated against arbitrary measures. But some results can hold under additional assumptions on $\mu_{\rm c}$ and for $\nu_{\rm c}$ and $\nu_{\rm c}$ and $\nu_{\rm c}$ and $\nu_{\rm c}$ are the formal continuous and cannot be integrated against arbitrary measures.

Geodesic convexity and estimate for L^{∞} measures.

Given r > 1, set $F_r(\rho) := \int_{\Omega} \rho(x)^r dx$. For every p > 1 and every r > 1, F_r is geodesically convex, i.e.

$$t\mapsto F_r(\rho_t)$$
 is convex

when ρ_t is the constant-speed geodesic between two measures μ and ν . Sending $r \to \infty$, we also have

$$||\rho_t||_{L^{\infty}} \leq \max\left\{||\mu||_{L^{\infty}}, ||\nu||_{L^{\infty}}\right\}.$$

We can then deduce

$$\int_{\Omega} \phi d(\nu - \mu) = \int_{0}^{1} \frac{d}{dt} \int_{\Omega} \phi d\rho_{t} = \int_{0}^{1} \int_{\Omega} \nabla \phi \cdot v_{t} d\rho_{t},$$
 hence, with $p' = p/(p-1)$, if we suppose $\mu, \nu \leq C$, we have

$$\left| \int_{\Omega} \phi d(\mu - \nu) \right| \leq W_p(\mu, \nu) \int_0^1 \left(\int_{\Omega} |\nabla \phi|^{p'} d\rho_t \right)^{1/p'} \leq C^{1/p'} W_p(\mu, \nu) ||\nabla \phi||_{L^{p'}}.$$

Generalizations also exist using L^r norms : $\left|\int \phi d(\mu-\nu)\right| \leq C^{1/p'} W_p(\mu,\nu) ||\nabla \phi||_{L^q}$ if $||\mu||_{L^r}, ||\nu||_{L^r} \leq C$ and $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{pr}$.

G. LOEPER Uniqueness of the solution to the Vlasov-Poisson system with bounded density, *JMPA*, 2006.

F. SANTAMBROGIO Optimal Transport for Applied Mathematicians, 2015, F. SAN

One-sided estimates (looking at grids)

What if μ is nice and ν is not, as it is the case when estimating the difference $\int_{\Omega}\phi dx - \frac{1}{N}\sum\phi(x_i)$, i.e. when discretizing integrals? The points x_i are often taken on a regular grid of step $N^{-1/d}$ and all Wasserstein distances $W_p(dx,\frac{1}{N}\sum_i\delta_{x_i})$ are of order $N^{-1/d}$. We then look at the case where p is very large, trying to obtain estimates with the smallest possible norm on $\nabla\phi$. Let's take $p=\infty$:

$$W_{\infty}(\mu, \nu) := \min\{||x - y||_{L^{\infty}(\gamma)} : \gamma \in \Pi(\mu, \nu)\}$$

$$= \min\{||v||_{L^{\infty}} : \partial_{t}\rho + \nabla \cdot (\rho_{t}v_{t}) = 0\}.$$

We then have

$$\left|\int_{\Omega}\phi d(\mu-\nu)\right|\leq W_{\infty}(\mu,\nu)\int_{0}^{1}\int_{\Omega}|\nabla\phi|d\rho_{t}=W_{\infty}(\mu,\nu)\int_{\Omega}|\nabla\phi|dm,$$

with $m=\int_0^1 \rho_t dt$. What can we say about the integrability of m? A simple scaling argument shows that, even in the worst case $(\nu=\delta_0)$, we have $||\rho_t||_{L^r} \leq (1-t)^{-d/r'}||\mu||_{L^r}$. Hence, $m\in L^r$ for every r< d'. F. Santambrogio Absolute continuity and summability of transport densities: simpler proofs and new estimates, 2009.

Sharp and Lorentz estimates – 1

From the previous estimate we easily obtain, for p > d

$$\left| \int_{\Omega} \phi d(\mu - \nu) \right| \leq W_{\infty}(\mu, \nu) ||\nabla \phi||_{L^{p}} \frac{p}{p - d} ||\mu||_{L^{p'}}.$$

Yet, for $\mu=dx$ and $\nu=\delta_0$, the measure m exploses at 0 as $|x|^{1-d}$. This is the limit behavior for not being in $L^{d'}$. But we can obtain better in the class of Lorentz spaces $L^{p,q}$ if we find the Lorentz space to which m belongs.

Lorentz summability of m was already considered by Dweik for transport densities, who proved $\mu \in L^{p,q} \Rightarrow m \in L^{p,q}$ for r < d' but did not consider the limit case p = d'.

S. DWEIK $L^{p,q}$ estimates on the transport density, Comm. Pures Appl. An., 2019.

Sharp and Lorentz estimates – 2

Let us recall the definition of Lorentz spaces and norms :

$$||u||_{L^{p,q}} \approx ||s \mapsto s|\{|u| > s\}|^{1/p}||_{L^q(\mathbb{R}_+, \frac{ds}{s})}.$$

In particular,

$$||u||_{L^{p,\infty}} \approx \sup_{s} s|\{|u|>s\}|^{1/p}$$
 ; $||u||_{L^{p,1}} \approx \int_{0}^{\infty} |\{|u|>s\}|^{1/p} ds$.

We can prove $(L^{p,q})' = L^{p',q'}$. Since $|x|^{1-d}$ belongs to $L^{d',\infty}$ around the origin, the conjecture was

$$\left| \int_{\Omega} \phi dx - \int_{\Omega} \phi d\nu \right| \leq C(d,\Omega) W_{\infty}(\mu,\nu) ||\nabla \phi||_{L^{d,1}}.$$

S. Steinerberger On a Kantorovich-Rubinstein inequality, JMAA, 2021.

The final result

We can prove

$$\mu \in \mathit{L}^{\mathit{d}',1} \Rightarrow \mathit{m} \in \mathit{L}^{\mathit{d}',\infty}$$

(with a small loss in the q-exponent, differently from the case r < d'). This is sharp in the sense that for $\mu = |x|^{1-d} dx$ on B_1 we have $\mu \in L^{d',\infty}$ but $m \approx |x|^{1-d} (1-\log(|x|)) \notin L^{d',\infty}$. The result also applies to the transport density, but sharpness is not clear.

Anyway, we obtain

$$\left|\int_{\Omega}\phi d(\mu-\nu)\right|\leq C(d)||\mu||_{L^{d',1}}W_{\infty}(\mu,\nu)||\nabla\phi||_{L^{d,1}},$$

thus proving Steinerberger's conjecture.

Don't think I'm done, let me give some proofs

I hanks for your attention

Don't think I'm done, let me give some proofs

Thanks for your attention