Régularisation entropique des barycentres dans I'espace de Wasserstein

Katharina Eichinger ${ }^{1}$

Dauphine | PSL因 CEREMADE

Joint work with Guillaume Carlier ${ }^{1}$ and Alexey Kroshnin ${ }^{2}$
${ }^{1}$ CEREMADE, Université Paris-Dauphine and INRIA-MOKAPLAN
${ }^{2}$ Université Claude Bernard, Lyon 1 and HSE university, Moscow

Optimal transport in a nutshell

For $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):=\left\{\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x|^{2} d x<\infty\right\}$ one seeks to optimize among all transport plans

$$
\begin{aligned}
\Pi(\mu, \nu):= & \left\{\gamma \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{1 \#} \gamma=\mu, \pi_{2 \#} \gamma=\nu\right\}, \\
& W_{2}^{2}(\mu, \nu):=\inf _{\gamma \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{1}{2}|x-y|^{2} \mathrm{~d} \gamma(x, y),
\end{aligned}
$$

Optimal transport in a nutshell

For $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):=\left\{\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x|^{2} d x<\infty\right\}$ one seeks to optimize among all transport plans

$$
\begin{aligned}
\Pi(\mu, \nu):= & \left\{\gamma \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{1 \#} \gamma=\mu, \pi_{2 \#} \gamma=\nu\right\}, \\
& W_{2}^{2}(\mu, \nu):=\inf _{\gamma \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{1}{2}|x-y|^{2} \mathrm{~d} \gamma(x, y),
\end{aligned}
$$

Brenier's theorem:
If $\mu \in \mathcal{P}_{\text {ac }}\left(\mathbb{R}^{d}\right)$, then there is a μ-a.e. unique transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$
\bar{\gamma}=(\mathrm{Id}, T)_{\#} \mu,
$$

and it is the gradient of a convex function φ_{μ}^{ν}, which we call Brenier potential.

Optimal transport in a nutshell

For $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right):=\left\{\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x|^{2} d x<\infty\right\}$ one seeks to optimize among all transport plans

$$
\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right): \pi_{1 \#} \gamma=\mu, \pi_{2 \#} \gamma=\nu\right\}
$$

$$
W_{2}^{2}(\mu, \nu):=\inf _{\gamma \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{1}{2}|x-y|^{2} \mathrm{~d} \gamma(x, y),
$$

Brenier's theorem:
If $\mu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$, then there is a μ-a.e. unique transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$
\bar{\gamma}=(\mathrm{Id}, T)_{\#} \mu,
$$

and it is the gradient of a convex function φ_{μ}^{ν}, which we call Brenier potential. Equivalently we have

$$
\nabla \varphi_{\mu \#}^{\nu} \mu=\nu
$$

or in the form of Monge-Ampère equation

$$
\operatorname{det}\left(D^{2} \varphi_{\mu}^{\nu}\right) \nu\left(\nabla \varphi_{\mu}^{\nu}\right)=\mu, \nabla \varphi_{\mu}^{\nu}(\operatorname{supp} \mu) \subset \operatorname{supp} \nu
$$

On the Fréchet mean

A probabilistic perspective:

- For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$
\inf _{c \in H} \mathbb{E}\left[\|X-c\|^{2}\right], \quad \text { respectively } \inf _{c \in H} \int_{H}\|x-c\|^{2} \mathrm{~d} P(x)
$$

On the Fréchet mean

A probabilistic perspective:

- For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$
\inf _{c \in H} \mathbb{E}\left[\|X-c\|^{2}\right], \quad \text { respectively } \inf _{c \in H} \int_{H}\|x-c\|^{2} \mathrm{~d} P(x)
$$

- This motivates the definition of Fréchet mean, which generalizes the notion of mean for metric spaces. In particular, on $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$ a Fréchet mean of $P \in \mathcal{P}_{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ is a minimizer of

$$
\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W_{2}^{2}(\rho, \nu) \mathrm{d} P(\nu)
$$

On the Fréchet mean

A probabilistic perspective:

- For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$
\inf _{c \in H} \mathbb{E}\left[\|X-c\|^{2}\right], \quad \text { respectively } \inf _{c \in H} \int_{H}\|x-c\|^{2} \mathrm{~d} P(x)
$$

- This motivates the definition of Fréchet mean, which generalizes the notion of mean for metric spaces. In particular, on $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$ a Fréchet mean of $P \in \mathcal{P}_{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ is a minimizer of

$$
\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W_{2}^{2}(\rho, \nu) \mathrm{d} P(\nu)
$$

- In particular for $P=\sum_{i=1}^{N} p_{i} \delta_{\nu_{i}}$

$$
\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \sum_{i=1}^{N} p_{i} W_{2}^{2}\left(\rho, \nu_{i}\right)
$$

which coincides with the Wasserstein barycenter introduced by Agueh and Carlier.

Some motivation

Figure: Taken from J. Ebert, V. Spokoiny and A. Suvorikova

Some motivation

Figure: Taken from J. Ebert, V. Spokoiny and A. Suvorikova

Figure: Taken from G. Peyré

Wasserstein barycenter on discretized space

Problem: Discretization phenomena
Given discretizations on a uniform grid of two uniform measures (red and green)

Figure: Taken from H. Lavenant

The true barycenter is given in blue (without being constraint on being on a grid)

Entropically regularized Wasserstein barycenter

A way to fix this is to add a regularizing term, as introduced by Bigot, Cazelles and Papadakis.

For $P \in \mathcal{P}_{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right), \Omega$ open, convex consider

$$
\begin{equation*}
\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W_{2}^{2}(\rho, \nu) \mathrm{d} P(\nu)+\lambda \operatorname{Ent}_{\Omega}(\rho) \tag{1}
\end{equation*}
$$

Entropically regularized Wasserstein barycenter

A way to fix this is to add a regularizing term, as introduced by Bigot, Cazelles and Papadakis.

For $P \in \mathcal{P}_{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right), \Omega$ open, convex consider

$$
\begin{equation*}
\inf _{\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W_{2}^{2}(\rho, \nu) \mathrm{d} P(\nu)+\lambda \operatorname{Ent}_{\Omega}(\rho) \tag{1}
\end{equation*}
$$

where Ent \boldsymbol{E}_{Ω} is defined for every $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ by

$$
\operatorname{Ent}_{\Omega}(\mu)= \begin{cases}\int_{\Omega} \rho \log \rho, & \text { if } \mu=\rho d x \text { and } \int_{\Omega} \rho=1 \\ +\infty, & \text { otherwise }\end{cases}
$$

First properties

- Existence and Uniqueness of (1): $\operatorname{bar}_{\lambda, \Omega}(P):=\operatorname{argmin}(1)$

First properties

- Existence and Uniqueness of (1): $\operatorname{bar}_{\lambda, \Omega}(P):=\operatorname{argmin}(1)$
- $\operatorname{bar}_{\lambda, \Omega}(P)$ is absolutely continuous and $\operatorname{supp}\left(\operatorname{bar}_{\lambda, \Omega}(P)\right)=\bar{\Omega}$

First properties

- Existence and Uniqueness of (1): $\operatorname{bar}_{\lambda, \Omega}(P):=\operatorname{argmin}(1)$
- $\operatorname{bar}_{\lambda, \Omega}(P)$ is absolutely continuous and $\operatorname{supp}\left(\operatorname{bar}_{\lambda, \Omega}(P)\right)=\bar{\Omega}$
- Characterization: $\bar{\rho}=\operatorname{bar}_{\lambda, \Omega}(P)$ if and only if $\bar{\rho}$ has a continuous density given by

$$
\begin{equation*}
\bar{\rho}(x):=\exp \left(-\frac{1}{2 \lambda}|x|^{2}+\frac{1}{\lambda} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \varphi_{\bar{\rho}}^{\nu}(x) \mathrm{d} P(\nu)\right), \tag{2}
\end{equation*}
$$

where $\varphi_{\bar{\rho}}^{\nu}$ denote the Brenier potentials from $\bar{\rho}$ to ν (properly normalized).

First properties

- Existence and Uniqueness of (1): $\operatorname{bar}_{\lambda, \Omega}(P):=\operatorname{argmin}(1)$
- $\operatorname{bar}_{\lambda, \Omega}(P)$ is absolutely continuous and $\operatorname{supp}\left(\operatorname{bar}_{\lambda, \Omega}(P)\right)=\bar{\Omega}$
- Characterization: $\bar{\rho}=\operatorname{bar}_{\lambda, \Omega}(P)$ if and only if $\bar{\rho}$ has a continuous density given by

$$
\begin{equation*}
\bar{\rho}(x):=\exp \left(-\frac{1}{2 \lambda}|x|^{2}+\frac{1}{\lambda} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \varphi_{\bar{\rho}}^{\nu}(x) \mathrm{d} P(\nu)\right) \tag{2}
\end{equation*}
$$

where $\varphi_{\bar{\rho}}^{\nu}$ denote the Brenier potentials from $\bar{\rho}$ to ν (properly normalized).

- Regularity of $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$ from this representation:

$$
\log (\bar{\rho}) \in L_{\mathrm{loc}}^{\infty}(\Omega), \bar{\rho} \in W_{\mathrm{loc}}^{1, \infty}(\Omega) \text { and } \nabla \bar{\rho} \in \mathrm{BV}_{\mathrm{loc}}\left(\Omega, \mathbb{R}^{d}\right)
$$

First properties

- Existence and Uniqueness of (1): $\operatorname{bar}_{\lambda, \Omega}(P):=\operatorname{argmin}(1)$
- $\operatorname{bar}_{\lambda, \Omega}(P)$ is absolutely continuous and $\operatorname{supp}\left(\operatorname{bar}_{\lambda, \Omega}(P)\right)=\bar{\Omega}$
- Characterization: $\bar{\rho}=\operatorname{bar}_{\lambda, \Omega}(P)$ if and only if $\bar{\rho}$ has a continuous density given by

$$
\begin{equation*}
\bar{\rho}(x):=\exp \left(-\frac{1}{2 \lambda}|x|^{2}+\frac{1}{\lambda} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \varphi_{\bar{\rho}}^{\nu}(x) \mathrm{d} P(\nu)\right) \tag{2}
\end{equation*}
$$

where $\varphi_{\bar{\rho}}^{\nu}$ denote the Brenier potentials from $\bar{\rho}$ to ν (properly normalized).

- Regularity of $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$ from this representation:

$$
\log (\bar{\rho}) \in L_{\mathrm{loc}}^{\infty}(\Omega), \bar{\rho} \in W_{\mathrm{loc}}^{1, \infty}(\Omega) \text { and } \nabla \bar{\rho} \in \mathrm{BV}_{\mathrm{loc}}\left(\Omega, \mathbb{R}^{d}\right)
$$

- Compare to (unregularized) barycenter:
- Uniqueness only if $P\left(\mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)\right)>0$,
- Characterization by obstacle problem

$$
\frac{1}{\lambda} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} \varphi_{\bar{\rho}}^{\nu}(x) \mathrm{d} P(\nu) \leq \frac{1}{2 \lambda}|x|^{2}+C \text { with equality } \bar{\rho} \text {-a.e. }
$$

Further regularity estimates

- Bound on Fisher information:

$$
\int_{\Omega}|\nabla \log (\bar{\rho})|^{2} \bar{\rho} \leq \frac{1}{\lambda^{2}} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W^{2}(\bar{\rho}, \nu) \mathrm{d} P(\nu) .
$$

Immediate consequence: $\sqrt{\bar{\rho}} \in H^{1}(\Omega)$.

Further regularity estimates

- Bound on Fisher information:

$$
\int_{\Omega}|\nabla \log (\bar{\rho})|^{2} \bar{\rho} \leq \frac{1}{\lambda^{2}} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W^{2}(\bar{\rho}, \nu) \mathrm{d} P(\nu) .
$$

Immediate consequence: $\sqrt{\bar{\rho}} \in H^{1}(\Omega)$.

- Further moment estimates: For $p \geq 2$ assume that

$$
\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)<+\infty
$$

(where $m_{p}(\nu):=\int_{\mathbb{R}^{d}}|x|^{p} \mathrm{~d} \nu(x)$). Then

$$
m_{p}(\bar{\rho}) \leq C(p)\left(\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)\right)+C(d, p)(\lambda)^{(d+p) / 2}
$$

Immediate consequence: $\bar{\rho}^{\frac{1}{\rho}} \in W^{1, p}(\Omega)$.

Further regularity estimates

- Bound on Fisher information:

$$
\int_{\Omega}|\nabla \log (\bar{\rho})|^{2} \bar{\rho} \leq \frac{1}{\lambda^{2}} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W^{2}(\bar{\rho}, \nu) \mathrm{d} P(\nu) .
$$

Immediate consequence: $\sqrt{\bar{\rho}} \in H^{1}(\Omega)$.

- Further moment estimates: For $p \geq 2$ assume that

$$
\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)<+\infty
$$

(where $m_{p}(\nu):=\int_{\mathbb{R}^{d}}|x|^{p} \mathrm{~d} \nu(x)$). Then

$$
m_{p}(\bar{\rho}) \leq C(p)\left(\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)\right)+C(d, p)(\lambda)^{(d+p) / 2}
$$

Immediate consequence: $\bar{\rho}^{\frac{1}{\rho}} \in W^{1, p}(\Omega)$.

Further regularity estimates

- Bound on Fisher information:

$$
\int_{\Omega}|\nabla \log (\bar{\rho})|^{2} \bar{\rho} \leq \frac{1}{\lambda^{2}} \int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} W^{2}(\bar{\rho}, \nu) \mathrm{d} P(\nu) .
$$

Immediate consequence: $\sqrt{\bar{\rho}} \in H^{1}(\Omega)$.

- Further moment estimates: For $p \geq 2$ assume that

$$
\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)<+\infty
$$

(where $m_{p}(\nu):=\int_{\mathbb{R}^{d}}|x|^{p} \mathrm{~d} \nu(x)$). Then

$$
m_{p}(\bar{\rho}) \leq C(p)\left(\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)\right)+C(d, p)(\lambda)^{(d+p) / 2}
$$

Immediate consequence: $\bar{\rho}^{\frac{1}{\rho}} \in W^{1, p}(\Omega)$.

- The last statement has also been shown for (unregularized) barycenters by Agueh \& Carlier. (displacement convexity argument)

Maximum principle

Let Ω be convex. If $P\left(\left\{\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right): \nu(\Omega)=1\right\}\right)=1$, then for $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$

$$
\|\bar{\rho}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq\left(\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}\|\nu\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}^{-1 / d} \mathrm{~d} P(\nu)\right)^{-d}
$$

Maximum principle

Let Ω be convex. If $P\left(\left\{\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right): \nu(\Omega)=1\right\}\right)=1$, then for $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$

$$
\|\bar{\rho}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq\left(\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}\|\nu\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}^{-1 / d} \mathrm{~d} P(\nu)\right)^{-d}
$$

In particular, if

$$
P\left(\left\{\nu \in L^{\infty}\left(\mathbb{R}^{d}\right), \nu \leq C\right\}\right)=\alpha>0,
$$

then the inequality becomes

$$
\|\bar{\rho}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{C}{\alpha^{d}} .
$$

The L^{∞} has also been shown for (unregularized) barycenters by Agueh \& Carlier for $\alpha=1$ and generalized for $0<\alpha<1$ by Kim \& Pass.

More regular case

Assume now $\Omega=B:=B_{R}(0), R>0$

$$
P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq C\right\}\right)=1,
$$

then

$$
\varphi_{\bar{\rho}}^{\nu} \in C^{3, \alpha}(\bar{B}) \text { for } P \text {-a.e. } \nu \quad \text { and } \quad \bar{\rho} \in C^{3, \alpha}(\bar{B})
$$

and there is a constant $K>0$ such that

$$
\left\|\varphi_{\bar{\rho}}^{\nu}\right\|_{C^{3, \alpha}(\bar{B})} \leq K \text { for } P \text {-a.e. } \nu .
$$

More regular case

Assume now $\Omega=B:=B_{R}(0), R>0$

$$
P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq C\right\}\right)=1,
$$

then

$$
\varphi_{\bar{\rho}}^{\nu} \in C^{3, \alpha}(\bar{B}) \text { for } P \text {-a.e. } \nu \quad \text { and } \quad \bar{\rho} \in C^{3, \alpha}(\bar{B})
$$

and there is a constant $K>0$ such that

$$
\left\|\varphi_{\bar{\rho}}^{\nu}\right\|_{C^{3, \alpha}(\bar{B})} \leq K \text { for } P \text {-a.e. } \nu .
$$

In particular, $\varphi_{\bar{\rho}}^{\nu}$ satisfies the Monge-Ampère equation in the classical sense

$$
\begin{aligned}
\operatorname{det}\left(D^{2} \varphi_{\bar{\rho}}^{\nu}\right) \nu\left(\nabla \varphi_{\bar{\rho}}^{\nu}\right) & =\bar{\rho} \text { in } B \\
\nabla \varphi_{\bar{\rho}}^{\nu}(B) & \subset B .
\end{aligned}
$$

No higher regularity known for the (unregularized) barycenter due to free boundary aspect of optimality condition.

Stochastic setting

Let now ν_{1}, ν_{2}, \ldots be a i.i.d. sequence in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ distributed according to P. Define $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$ and the random variable

$$
\begin{equation*}
\bar{\rho}_{\boldsymbol{n}}:=\operatorname{argmin}_{\boldsymbol{\rho} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2}\left(\boldsymbol{\rho}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)+\lambda \operatorname{Ent}_{\Omega}(\boldsymbol{\rho}) . \tag{3}
\end{equation*}
$$

Stochastic setting

Let now ν_{1}, ν_{2}, \ldots be a i.i.d. sequence in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ distributed according to P. Define $\bar{\rho}:=\operatorname{bar}_{\lambda, \Omega}(P)$ and the random variable

$$
\begin{equation*}
\bar{\rho}_{\boldsymbol{n}}:=\operatorname{argmin}_{\boldsymbol{\rho} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2}\left(\boldsymbol{\rho}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)+\lambda \operatorname{Ent}_{\Omega}(\boldsymbol{\rho}) \tag{3}
\end{equation*}
$$

We obtain a Strong Law of Large Numbers. Namely if

- $\int_{\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)} m_{p}(\nu) \mathrm{d} P(\nu)<+\infty$ for $p \geq 2$, then almost surely (a.s.)

$$
\begin{aligned}
& W_{p}\left(\bar{\rho}_{\boldsymbol{n}}, \bar{\rho}\right) \longrightarrow \\
& \quad \bar{\rho}_{\boldsymbol{n}} \xrightarrow{W_{\mathrm{loc}}^{1, q}(\Omega)} \bar{\rho} \quad \forall 1 \leq q<\infty \\
& \bar{\rho}_{\boldsymbol{n}}^{1 / p} \xrightarrow{W^{1, p}(\Omega)} \bar{\rho}^{1 / p}
\end{aligned}
$$

- $P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq C\right\}\right)=1$, then $\bar{\rho}_{\boldsymbol{n}} \xrightarrow{\text { a.s. }} \bar{\rho}$ in $C^{3, \beta}(\bar{B})$ for any $\beta \in(0, \alpha)$.
- For (unregularized) barycenter LLN only w.r.t. convergence in W_{2} known.

Central Limit Theorem

If $P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq C\right\}\right)=1$, The empirical barycenters satisfy a CLT in

$$
L_{\diamond}^{2}(B):=\left\{u \in L^{2}(B): \int_{B} u d x=0\right\}:
$$

$$
\sqrt{n}\left(\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}-\bar{\rho}\right) \xrightarrow{d} \boldsymbol{\xi} \sim \mathcal{N}(0, \Sigma),
$$

with covariance operator $\Sigma=G^{-1} \operatorname{Var}_{P}\left(\varphi_{\bar{\rho}}^{\nu}\right) G^{-1}$

Central Limit Theorem

If $P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq C\right\}\right)=1$, The empirical barycenters satisfy a CLT in
$L_{\diamond}^{2}(B):=\left\{u \in L^{2}(B): \int_{B} u d x=0\right\}:$

$$
\sqrt{n}\left(\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}-\bar{\rho}\right) \xrightarrow{d} \boldsymbol{\xi} \sim \mathcal{N}(0, \Sigma),
$$

with covariance operator $\Sigma=G^{-1} \operatorname{Var}_{P}\left(\varphi_{\rho}^{\nu}\right) G^{-1}$,

$$
G: u \mapsto \lambda \frac{u}{\bar{\rho}}-\lambda f_{B} \frac{u}{\bar{\rho}}-\mathbb{E}\left(\Phi^{\nu}\right)^{\prime}(\bar{\rho}),
$$

and where

$$
\begin{aligned}
& \Phi^{\nu}: \mathcal{S} \rightarrow \mathcal{M}, \\
& \mu \mapsto \varphi, \text { where } \operatorname{det}\left(D^{2} \varphi\right) \nu(\nabla \varphi)=\mu, \\
& \nabla \varphi(\bar{B})=\bar{B},
\end{aligned}
$$

with $\mathcal{S}=\left\{\varrho \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\| \|_{C^{1, \alpha}(\bar{B})}+\|\log \varrho\|_{L^{\infty}(\bar{B})}<\infty\right\}$, $\mathcal{M}=\left\{\varphi \in C^{3, \alpha}(\bar{B}):\|\nabla \varphi\|^{2}-R^{2}=0\right.$ on $\left.\partial B, \int_{B} \varphi=0\right\}$.

Central Limit Theorem: Idea of proof

Use a delta method: In our case, CLT in Hilbert spaces gives

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi_{\bar{\rho}}^{\nu_{i}}-\mathbb{E}_{P}\left[\varphi_{\bar{\rho}}^{\nu}\right]\right) \xrightarrow{d} \mathcal{N}\left(0, \operatorname{Var}_{P}\left(\varphi_{\bar{\rho}}^{\nu}\right)\right)
$$

Central Limit Theorem: Idea of proof

Use a delta method: In our case, CLT in Hilbert spaces gives

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \varphi_{\bar{\rho}}^{\nu_{i}}-\mathbb{E}_{P}\left[\varphi_{\bar{\rho}}^{\nu}\right]\right) \xrightarrow{d} \mathcal{N}\left(0, \operatorname{Var}_{P}\left(\varphi_{\bar{\rho}}^{\nu}\right)\right)
$$

We want to rewrite this in the form $G_{n}\left(\bar{\rho}_{n}-\bar{\rho}\right)$, where G_{n} are invertible operators which converge in a nice way to a suitable operator G

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \varphi_{\bar{\rho}}^{\nu_{i}}-\mathbb{E}_{P}\left[\varphi_{\bar{\rho}}\right] & =\frac{1}{n} \sum_{i=1}^{n} \varphi_{\bar{\rho}_{\boldsymbol{n}}}^{\nu_{i}}-\mathbb{E}_{P}\left[\varphi_{\bar{\rho}}^{\nu}\right]-\frac{1}{n} \sum_{i=1}^{n}\left(\varphi_{\bar{\rho}_{\boldsymbol{n}}}^{\nu_{i}}-\varphi_{\bar{\rho}}^{\nu_{i}}\right) \\
& =F\left(\bar{\rho}_{\boldsymbol{n}}\right)-F(\bar{\rho})-\frac{1}{n} \sum_{i=1}^{n}\left(\Phi^{\nu_{i}}\left(\bar{\rho}_{\boldsymbol{n}}\right)-\Phi^{\nu_{i}}(\bar{\rho})\right) \\
& =\boldsymbol{G}_{\boldsymbol{n}}\left(\bar{\rho}_{\boldsymbol{n}}-\bar{\rho}\right)
\end{aligned}
$$

with $F(\rho)=\lambda \log \rho+\frac{|x|^{2}}{2}-f_{B}\left(\lambda \log \rho+\frac{|x|^{2}}{2}\right)$,
$\boldsymbol{G}_{\boldsymbol{n}}=\int_{0}^{1} F^{\prime}\left(\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}^{\boldsymbol{t}}\right) \mathrm{d} t-\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{1}\left(\Phi^{\nu_{i}}\right)^{\prime}\left(\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}^{\boldsymbol{t}}\right) \mathrm{d} t$ with $\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}^{\boldsymbol{t}}=(1-t) \bar{\rho}+t \overline{\boldsymbol{\rho}}_{\boldsymbol{n}}$.

Central Limit Theorem: Idea of proof

For $\rho \in \mathcal{S}=\left\{\varrho \in \mathcal{P}_{\mathrm{ac}}(\bar{B}):\|\varrho\|_{C^{1, \alpha}(\bar{B})}+\|\log \varrho\|_{L^{\infty}(\bar{B})}<\infty\right\}$

- F is differentiable with

$$
F^{\prime}(\rho): u \mapsto \lambda \frac{u}{\rho}-\lambda f_{B} \frac{u}{\rho} .
$$

Central Limit Theorem: Idea of proof

- F is differentiable with

$$
F^{\prime}(\rho): u \mapsto \lambda \frac{u}{\rho}-\lambda f_{B} \frac{u}{\rho} .
$$

- $\varphi:=\Phi^{\nu}(\rho)$ is given by the solution of the Monge-Ampère equation

$$
\begin{aligned}
\operatorname{det}\left(D^{2} \varphi\right) \nu(\nabla \varphi) & =\bar{\rho} \text { in } B \\
\nabla \varphi(B) & \subset B .
\end{aligned}
$$

So its derivative corresponds to linearizing this equation. We have enough regularity to conclude that Φ^{ν} is differentiable with $\left(\Phi^{\nu}\right)^{\prime}(\rho): u \mapsto h$ where

$$
\begin{aligned}
\operatorname{div}\left(A_{\nu} \nabla h\right) & =u \text { in } B, \\
\nabla \varphi \cdot \nabla h & =0 \text { on } \partial B,
\end{aligned}
$$

for $A_{\nu}=\nu(\nabla \varphi) \operatorname{det}\left(D^{2} \varphi\right)\left(D^{2} \varphi\right)^{-1}$.

Central Limit Theorem: Idea of proof

- Thanks to the regularity estimates
$\bar{\rho}_{\boldsymbol{n}}^{\boldsymbol{t}} \in\left\{\nu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right): \nu(\bar{B})=1,\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq \tilde{C}\right\}$ implying $F^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ to be Hermitian, bounded and uniformly positive definite and $\left(\Phi^{\nu}\right)^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ Hermitian, bounded and negative definite on $L_{\diamond}^{2}(B)$.

Central Limit Theorem: Idea of proof

- Thanks to the regularity estimates
$\bar{\rho}_{\boldsymbol{n}}^{\boldsymbol{t}} \in\left\{\nu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right): \nu(\bar{B})=1,\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq \tilde{C}\right\}$ implying $F^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ to be Hermitian, bounded and uniformly positive definite and $\left(\Phi^{\nu}\right)^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ Hermitian, bounded and negative definite on $L_{\diamond}^{2}(B)$.
- For the interpolation operator $\boldsymbol{G}_{\boldsymbol{n}}$ thanks to LLN, it follows that $\boldsymbol{G}_{\boldsymbol{n}} \xrightarrow{\mathrm{SOT}} G$ a.s. where

$$
G: u \mapsto \lambda \frac{u}{\bar{\rho}}-\lambda f_{B} \frac{u}{\bar{\rho}}-\mathbb{E}\left(\Phi^{\nu}\right)^{\prime}(\bar{\rho}) .
$$

Central Limit Theorem: Idea of proof

- Thanks to the regularity estimates
$\bar{\rho}_{\boldsymbol{n}}^{\boldsymbol{t}} \in\left\{\nu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right): \nu(\bar{B})=1,\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq \tilde{C}\right\}$ implying $F^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ to be Hermitian, bounded and uniformly positive definite and $\left(\Phi^{\nu}\right)^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ Hermitian, bounded and negative definite on $L_{\diamond}^{2}(B)$.
- For the interpolation operator $\boldsymbol{G}_{\boldsymbol{n}}$ thanks to LLN, it follows that $\boldsymbol{G}_{\boldsymbol{n}} \xrightarrow{\text { SOT }} G$ a.s. where

$$
G: u \mapsto \lambda \frac{u}{\bar{\rho}}-\lambda f_{B} \frac{u}{\bar{\rho}}-\mathbb{E}\left(\Phi^{\nu}\right)^{\prime}(\bar{\rho}) .
$$

- Convergence of $\boldsymbol{G}_{\boldsymbol{n}}{ }^{-1} \xrightarrow{\text { SOT }} G^{-1}$ a.s. follows by the uniform positivity; for any $u \in L_{\diamond}^{2}(B)$

$$
\boldsymbol{G}_{\boldsymbol{n}}^{-1} u-G^{-1} u=\boldsymbol{G}_{\boldsymbol{n}}^{-1}\left(G-\boldsymbol{G}_{\boldsymbol{n}}\right) G^{-1} u \xrightarrow{L^{2}(B)} 0 \text { a.s. }
$$

Central Limit Theorem: Idea of proof

- Thanks to the regularity estimates
$\bar{\rho}_{\boldsymbol{n}}^{\boldsymbol{t}} \in\left\{\nu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right): \nu(\bar{B})=1,\|\nu\|_{C^{1, \alpha}(\bar{B})}+\|\log \nu\|_{L^{\infty}(\bar{B})} \leq \tilde{C}\right\}$ implying $F^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ to be Hermitian, bounded and uniformly positive definite and $\left(\Phi^{\nu}\right)^{\prime}\left(\bar{\rho}_{n}^{t}\right)$ Hermitian, bounded and negative definite on $L_{\circ}^{2}(B)$.
- For the interpolation operator $\boldsymbol{G}_{\boldsymbol{n}}$ thanks to LLN, it follows that $\boldsymbol{G}_{\boldsymbol{n}} \xrightarrow{\mathrm{SOT}} G$ a.s. where

$$
G: u \mapsto \lambda \frac{u}{\bar{\rho}}-\lambda f_{B} \frac{u}{\bar{\rho}}-\mathbb{E}\left(\Phi^{\nu}\right)^{\prime}(\bar{\rho}) .
$$

- Convergence of $\boldsymbol{G}_{\boldsymbol{n}}{ }^{-1} \xrightarrow{\text { SOT }} G^{-1}$ a.s. follows by the uniform positivity; for any $u \in L_{\diamond}^{2}(B)$

$$
\boldsymbol{G}_{\boldsymbol{n}}^{-1} u-G^{-1} u=\boldsymbol{G}_{\boldsymbol{n}}^{-1}\left(G-\boldsymbol{G}_{\boldsymbol{n}}\right) G^{-1} u \xrightarrow{L^{2}(B)} 0 \text { a.s. }
$$

- A version of Słutsky's theorem guarantees then that

$$
\boldsymbol{G}_{\boldsymbol{n}}{ }^{-1} \sqrt{n} \boldsymbol{G}_{\boldsymbol{n}}\left(\bar{\rho}_{n}-\bar{\rho}\right) \xrightarrow{d} \xi \sim \mathcal{N}(0, \Sigma) .
$$

The End

Thank you for your attention!

