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Shape optimization and industrial applications‘

e The increase in the cost of raw materials urges to op-
timize the shape of mechanical parts from the early
stages of design.

e The numerical resolution of shape optimization prob-
lems is plagued by a major difficulty:

- The evaluations of the objective and its deriva-
tive involve mechanical computations, using the
Finite Element method on a mesh of the shape.

- The shape is (dramatically!) modified in the
course of the iterative optimization process

= Need to update this computational mesh.

e This difficulty arises in many inverse problems: shape
detection or reconstruction, image segmentation, etc.
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O Mathematical modeling of shape optimization problems
@ shape optimization of linear elastic structures
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A shape is a bounded domain Q C R?, which is

e fixed on a part I'p of its boundary,
e submitted to surface loads g, applied on 'y C
o, TpNly = 0.

The displacement vector field ug : Q — R is gov-
erned by the linear elasticity system:

—div(Ae(ug)) = 0 inQ
uQ = 0 onlp
Ae(uq)n = g only ’
Ae(uq)n = 0 onTl

where e(u) = 3(Vu' + Vu) is the strain tensor,
and A is the Hooke's law of the material:

Ve € Sq(R), Ae =2ue+ Atr(e)l.

I'p L'y

A “Cantilever”

The deformed cantilever
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Starting from an initial structure Qo, find a new one Q that minimizes a

certain functional of the domain J(2).

e The work of the external loads g or compliance C(2) of domain Q:

c(Q) = /QAE(UQ) s e(ug)dx = /rN g.ug ds

e A least-square error between ug and a target displacement ug € HI(Q)d
(useful when designing micro-mechanisms):

D(@) = ( [ Kl uo|“dx) "

where « is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter ¢:

Minimize J(Q) := C(Q) + £ Vol(Q), or D(Q) + ¢ Vol(€). \
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O Mathematical modeling of shape optimization problems

o Differentiation with respect to the domain: Hadamard's method
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Differentiation with respect to the domain: Hadamard's method (1)

Hadamard's boundary variation method

Qp
features variations of a reference, Lipschitz
domain € of the form:

Qp = (Id + 6)(Q),

for “small” @ € Wb (R, R7).

AN

For all € W> (R?,RY) with norm ||0||W1v°°(Rd,Rd) <1, (Id + 0) is a Lipschitz
diffeomorphism of RY, with Lipschitz inverse.




Differentiation with respect to the domain: Hadamard’'s method (I1)

Definition 1.
Let Q C RY be a smooth domain. A (scalar) function Q — F(Q) is shape
differentiable at Q if the mapping
W (R, RY) 3 0 — F(Q)

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

F(Q0) = F() + F'(2)(0) + o (10]lwa.c0 (rd z4)) -

The bounded operator 6 — F'(2)(6) is the shape derivative of J(2) at Q.

DA
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e Techniques from optimal control allow to compute shape derivatives; in the case of
“many” functionals J(Q), the latter has the structure:

J(Q)(0) = /VQ 0 nds,

r

where vq is a scalar field depending on uq, and possibly on an adjoint state pq.

e The derivative J'(2)(0) yields a natural descent direction for J(Q2): for instance,
defining 6 as
0 = —van

yields, for t > 0 sufficiently small (to be found numerically):

J(0) = J(Q) — t/ v3 ds +o(t) < J(R)

If J(Q) = C(Q) = er g - uq ds is the compliance, vo = —Ae(uq) : e(uq).

10/58



O Mathematical modeling of shape optimization problems

@ Numerical implementation of shape optimization algorithms
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Gradient algorithm: For n =0, ... convergence,

Compute the solution ugn (and pon) of the elasticity system on Q".
From the shape derivative J'("), infer a descent direction 6" for J(£2).

Advect the shape Q" according to 6", so as to get Q"™ := (Id + ")(Q").

Problem: This strategy relies on two conflicting needs:
o An efficient advection of the shape Q" — Q"*! at each step;

e A high-quality mesh of each shape Q", for finite element computations.

—>

Pushing nodes according to the velocity field may result in an invalid configuration.
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The generic numerical algorithm (I1)

I'\_sharediacl DREAM\caldarp_optim_ fem
Result : [A_sharediao\DREAM\caldarp_optim_ nsole_des.h3d
Design : feration 0

Frame 1

Pushing the vertices of the mesh of Q" along 0" inevitably makes it ill-shaped, or worse, overlapping.
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way.

A short detour by the Level Set Method

B(x) <0

A paradigm: [OS¢| the motion of an evolving domain is best described in an implicit
One domain Q C R? is equivalently defined by a function ¢ : RY — R such that
if xeQ

;o 9(x)=0

ifxedQ ; ¢(x)>0 Q

if x€Q
NN

A bounded domain Q C R? (left); graph of an associated level set function (right).

[m]
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Let Q(t) C R? be a domain moving according
to a velocity field v(t,x) € R?.

Let ¢(t, x) be a level set function for Q(t).

The motion of Q(t) translates in terms of ¢ as
the level set advection equation:

¢ B
E(t, x)+ v(t,x).Vé(t,x) =0

If v(t,x) is normal to the boundary 0(t), i.e.:

v(t, x) = V(t,x)M

this rewrites as a Hamilton-Jacobi equation:

Q(t +dt) = [p(t + dt,.) < 0]

99 (t,) + V(£ 9l V6(t, )] = 0
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The shapes Q" are embedded in a working
domain D equipped with a fixed mesh.

The successive shapes Q" are accounted for
in the level set framework, i.e. via a function
@" : D — R which implicitly defines them.

At each step n, the exact linear elasticity system
on Q7 is approximated by the Ersatz material
approach: the void D \ Q" is filled with a very
‘soft’ material, which leads to an approximate
system posed on D.

This approach is very versatile and does not re-
quire a mesh of the shapes at each iteration.

Shape accounted for with a level set

description
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The proposed method for handling mesh evolution

The mesh 7" of D is unstructured and changes at each iteration n, so that Q" is
explicitly discretized in 7.

e Finite element analyses are conducted on Q" by “for-
getting” the part of 7" for the void D\ Q".

N
s

e The advection Q" — Q"1 is carried out on the whole
mesh 7", using a level set description ¢" of Q".
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© From meshed domains to a level set description,... and conversely
o Initializing level set functions with the signed distance function
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Isosurface discretization (I1)
Definition 2.

The level set function ¢ for Q C D is often chosen as the signed distance function.
The signed distance function dq : R? — R to a bounded domain Q C RY is given by:
—d(x,0Q) if xeQ,
dQ(X) = 0 if x € 89,
d(x,090)  otherwise,
where d(x,09) := rgggz |x — p| is the usual Euclidean distance from x to 0.
P

OW 0\/1
Two level set functions for the domain Q = (0,1) C R
o

=

DA
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e Efficient algorithms exist to calculate dg, such as the Fast Marching algorithm
, the Fast Sweeping algorithm , etc.

e A free, open-source implementation: mshdist
. https://github.com/ISCDtoolbox/Mshdist

< C /github.cor

O Search or jump to... Pull requests Issues Marketplace ~Explore

& 1SCDtoolbox / Mshdist ' Pubiic & pin

<> Code Issues 1 Pull requests 1 Actions Projects Security Insights Settings

# master + ¥ 3branc © 0tags Go to file Code ~

@ capogny Redistancing in surface context seems to work ¢53b5 7 D 58 commits
M documentation Change mesh file in the documentation

B sources

O gitignore

D travisyml

(3 CMakeLists.txt xe: s and small errors
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A 3d example.

(a)

(b)

(c)

(d) (e)
Isosurfaces of the signed distance function to the 'Aphrodite’ (a): (b): isosurface
—0.01, (c): isosurface 0, (d): isosurface 0.02, (e): isosurface 0.05.

DA
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© From meshed domains to a level set description,... and conversely

@ Meshing the negative subdomain of a level set function: local remeshing
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Meshing the negative subdomain of a level set function

Discretizing explicitely the 0 level set of a function ¢ : D — R defined at the vertices
of a simplicial mesh 7 of a computational box D is fairly easy, using patterns.

L " k L L k ! L 1 K| KL | |
AAAAAAAA AAAAI
TR P

T

BN NN
NANNNAN

(Left) O level set of a scalar function defined over a mesh; (right) explicit discretization in the mesh.

However, doing so is bound to produce a very low-quality mesh, on which finite
element computations will prove slow, inaccurate, not to say impossible.

= Need to improve the quality of a mesh, while retaining its geometric features.
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Local remeshing in 3d

e Let 7 be an initial - valid, yet potentially ill-shaped - tetrahedral mesh. T carries a
surface mesh S7, whose triangles are faces of tetrahedra of 7.

e T is intended as an approximation of an ideal domain Q C R?, and St as an
approximation of its boundary 99.

Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh 7~',
whose corresponding surface mesh Sz is a good approximation of 9.
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Local remeshing in 3d: definition of an ideal domain

e In realistic cases, the “ideal” domain Q of 7 is unknown.

e However, from the knowledge of 7 (and S7), one can reconstruct geometric
features of Q or 9Q: normal vectors at regular points of 99,...

e These features allow for a local parametrization of Q around each surface triangle
T € S1, e.g. as a Bézier surface.

a1 = bo3o

(170) az = b[][)g

ap = bzoo

(0,0) 0,1)

Generation of a cubic Bézier parametrization for the piece of 92 associated to triangle T, from the
approximated geometrical features (normal vectors at nodes).
26 /58



e Four local remeshing operators are intertwined, to iteratively increase the quality
of the mesh T edge split, edge collapse, edge swap, and vertex relocation.

e Each one of them exists under two different forms, depending on whether it is
applied to a surface configuration, or an internal one.

e A size map h is defined, to reach a good mesh sampling. It generally depends on
the principal curvatures k1, k2 of 9, but may also be user-defined (e.g. in a
context of mesh adaptation).
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If an edge pq is “too long”, insert its midpoint m, then split it into two.

e If pg belongs to a surface triangle T € S7, m lies on the piece of 9Q computed
from T. Else, it is merely inserted as the midpoint of p and q.

e An edge may be deemed "“too long” when compared to the prescribed size, or
because it entails a bad geometric approximation of 9.

g

Splitting of one (left) or three (right) edges of triangle T, positioning the new points on the ideal surface S
(dotted).
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If an edge pq is “too short”, merge its two endpoints.

e Careful checks are in order to ensure the validity of the resulting configuration:

- This operation may invalidate some tetrahedra (i.e. create overlappings).

- When it is applied to a surface configuration, it may deteriorate the
geometric approximation of 9€;

e An edge may be “too short” when compared to the prescribed size, or because it is
unnecessarily short for a fine geometric approximation of 9.

— \ _~ — \ ~

Collapse of point p over q in a surface configuration.
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In 2d, collapsing p over q (left) invalidates the resulting mesh (right): both greyed triangles end up inverted.
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Suppress and edge pg from the mesh and reconnect the leftover cavity adequately.

This operator is key in improving the quality of the elements of the mesh.

p

In 2d the edge pq is removed from the mesh, and the edge ab corresponding to the alternate configuration is
added.
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Local mesh operators: edge swap (II)

p p

The 3d edge swap operator is much more involved than its 2d counterpart.
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Slightly move a point p in the mesh, while leaving all connectivities unchanged.

This operator is the main ingredient in the fine-quality tuning of the mesh

p

Relocation of node p to p, along the surface.
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Local remeshing in 3d: numerical examples

Mechanical part before (left) and after (right) remeshing.
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Local remeshing in 3d: numerical examples

e

(Left) Some isosurfaces of an implicit function defined in a cube, (centre) result after rough discretization in the

ambient mesh, (right) result after local remeshing.
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{A word of advertisement

. .
»
Mmg PLATFORM
Robust, Open-source & Multidisciplinary * .
Software for Remeshing J . Ungracje
- Jour meshes

These general purpose remeshing algorithms are part of the free, open-source
environment Mmg.

@ https://www.mmgtools.org

https://github.com/MmngTools/mmg
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© Application to shape optimization
@ Numerical implementation
@ The algorithm in motion
@ Numerical results
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e At each iteration, the shape Q" is endowed with an unstructured mesh 7" of a
larger, fixed, bounding box D; a mesh of Q" explicitly appears as a submesh.

e When dealing with finite element computations on Q", the part of 7" exterior to
Q" is discarded.

= The shape gradient is accurately calculated.

e When dealing with the shape update step,

A level set function ¢" is generated on the whole mesh 77,

The level set advection equation is solved on this mesh, to get ¢"**.

From the knowledge of ¢"!, a new unstructured mesh 7"t is recovered, in

which the new shape Q"+ explicitly appears.
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The algorithm in motion...

vertices of the mesh 7" of D.

From the actual shape Q", generate the signed distance function dgn» at the

(a) The initial shape

(b) Graph of dg-

DA
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The algorithm in motion...

e Discard the exterior part D\ Q";

e Calculate the descent direction 6" on (the mesh 7" of) Q".

557976400
0.0000E+00

167398401
T1S9ER01

223196401

(a) The "interior mesh"

(b) Computation of 6"

Dac
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The algorithm in motion...

e “Retrieve" the whole mesh 7" of D.
e Extend the velocity field 6" to the whole mesh;
e Advect dqn along 0" for a (small) time step 7.

o A new level set function ¢™! is obtained on 7", for the new shape Q1.

L’ / //&ih\\( .
6%

N

The shape Q", discretized in the mesh (in yellow), and the "new", advected 0-level set (in-red).
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The algorithm in motion...

e The 0 level set of ¢"*?! is explicitly discretized in the mesh 7.

o As expected, roughly "inserting" this line in 7" yields a very ill-shaped mesh.

Rough discretization of the 0 level set of ¢"** into T"; the resulting mesh of D is ill-shaped.

=

DA
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e Mesh modification is then conducted, so as to enhance the overall quality of the
mesh according to the geometry of the shape.

e The new mesh 7™ is eventually obtained.

Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh T"** of D in which Q"*

is explicitly discretized.
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The algorithm in motion...
Repeat the procedure until convergence (discretize the 0-level set in the
computational mesh, clean the mesh,...).
3 i k% » Q&
B . ] ) o N
<k x
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The “benchmark” two-dimensional
optimal mast test case.

e Minimization of the compliance
c(Q) = / Ae(uq) : e(uq) dx.
Q

e A volume constraint is enforced.
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’Numerical results: 3d cantilever

The “benchmark’” three-dimensional cantilever test case.

e Minimization of the compliance
e A volume constraint is enforced by

Q) = / Ae(uq) : e(uq) dx. means of a fixed Lagrange multiplier.
Q

% v

L]/
\ £
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Another example in multiphase optimization

Optimal repartition of two materials Ao, A1 Ql
occupying subdomains Q° and Q* := D\Q°
of a fixed working domain D, with total
(discontinuous) Hooke's law r

AQO = AOXQO + A1XQI .

e We minimize the compliance C(Q°) = / Aqoe(ugo) : e(ugo) dx of D.
D

e The shape derivative reads:
c'(Q°)(9) = /D(u, u) 0 - nds.
r

e Evaluating D(u, u) is awkward in a fixed mesh context, for it involves jumps of the
(discontinuous) strain and stress tensors e(u) and o(u) at the interface I

47 /58



Numerical results: a multiphase beam

e We minimize the compliance of a beam D, with respect to the repartition of the
constituent materials Ao, A; (E* = E®/3).

e A constraint on the volume of the stiffer material is enforced by means of a fixed
Lagrange multiplier.
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A solid obstacle Q; := Q is placed inside a fixed cavity D where a fluid is flowing,
occupying the phase Qf := D \ Q.

The fluid obeys the Navier-Stokes equations (Re = 60), and the solid is governed
by the linearized elasticity system.

Weak coupling between Qf and €Qs: the fluid exerts a traction on the interface I'.

We optimize the shape of £, with respect to the solid compliance
5(Q) = / Ae(un,) : e(uq,) dx,

under a volume constraint.
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A thermal chamber D is divided into

- A phase Q with high conductivity 11
- A phase D\ Q with low conductivity o.

A temperature To = 0 is imposed on I'p
and the remaining boundary 9D \ Tp is in-
sulated from the outside.

A heat source is acting inside D.

The temperature uq inside D is solution to
the two-phase Laplace equation.

The average temperature inside D,

1
J(Q): ﬁAUde

is minimized under a volume constraint.
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Optimization of the shape of a heat diffuser (II)

Optimization of the shape of a heat diffuser.

[m]

=

DA
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heat.mp4
Media File (video/mp4)


Optimization of the shape of a heat exchanger (1)

A thermal chamber D is divided into

- A phase Q¢ hot conveying a hot fluid;
- A phase Q¢ co1d conveying a cold fluid;
- A solid phase Qs.

The Navier-Stokes equations are satisfied in
Qf,hotv Qf,ccsld-

inin

e

The stationary heat equation accounts for
the temperature diffusion within D.

The heat transferred from Qf hot to Qf cold
is maximized.

A constraint is imposed on the minimal dis-
tance between Qf hot and Qf coid:

d (2 hot> f cold) = dmin-

Volume and pressure drop constraints are
added on Qf,hot, Qf7co|d.
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Optimization of the shape of a heat exchanger (II)

Optimization of the shape of a heat exchanger.

DA
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dmin003.mp4
Media File (video/mp4)
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