From Euler's Hydrodynamics to Einstein's Gravitation through Monge's Optimal Transport

Yann Brenier, CNRS,
LMO, Orsay, Université Paris-Saclay, in association with the team CNRS-INRIA "MOKAPLAN".

RENCONTRE MAGA, AUTRANS, 02-04/02/2022

General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:
A. Mondino, S. Suhr arXiv:1810.13309, 2018,
R. McCann, Camb. J. Math. 2020, based on Lott-Sturm-Villani OT definition of Ricci curvature.

General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:
A. Mondino, S. Suhr arXiv:1810.13309, 2018,
R. McCann, Camb. J. Math. 2020, based on Lott-Sturm-Villani OT definition of Ricci curvature. Our approach is different and related to the hydrodynamical formulation of OT (Benamou-B. 2000).
ref: Y.B. CRAS 2021 (https://hal.archives-ouvertes.fr/hal-03311171).

Euler's Hydrodynamics

In 1757, Euler described fluids in a definite way as a "field theory", with a comprehensive and consistent set of partial differential equations:

Euler's Hydrodynamics

In 1757, Euler described fluids in a definite way as a "field theory", with a comprehensive and consistent set of partial differential equations:
$\partial_{t} \rho+\nabla \cdot(\rho v)=0, \partial_{t}(\rho v)+\nabla \cdot(\rho v \otimes v)+\nabla(p(\rho))=0$.

Euler's Hydrodynamics

In 1757, Euler described fluids in a definite way as a "field theory", with a comprehensive and consistent set of partial differential equations:
$\partial_{t} \rho+\nabla \cdot(\rho v)=0, \partial_{t}(\rho v)+\nabla \cdot(\rho v \otimes v)+\nabla(p(\rho))=0$.
This was the prototype of the future field theories in Physics (Maxwell, Einstein, Schrödinger, Dirac)...

Euler's Hydrodynamics

In 1757, Euler described fluids in a definite way as a "field theory", with a comprehensive and consistent set of partial differential equations:
$\partial_{t} \rho+\nabla \cdot(\rho v)=0, \partial_{t}(\rho v)+\nabla \cdot(\rho v \otimes v)+\nabla(p(\rho))=0$.
This was the prototype of the future field theories in Physics (Maxwell, Einstein, Schrödinger, Dirac)... and the first multidimensional evolution PDEs ever written!

Euler 1757 : the 1st multiD evolution PDEs ever writen...
XXI. Nous n’avons donc qu'à égaler ces forces accélératrices avec les accellerations actuelles que nous venons de trouver, \& nous obtiendrons les trois équations fuivaǹtes :

$$
\begin{aligned}
& \mathrm{P}-\frac{\mathrm{I}}{q}\left(\frac{d p}{d x}\right)=\left(\frac{d u}{d t}\right)+u\left(\frac{d u}{d x}\right)+v\left(\frac{d u}{d y}\right)+w\left(\frac{d u}{d z}\right) \\
& \mathrm{Q}-\frac{\mathrm{r}}{q}\left(\frac{d p}{d y}\right)=\left(\frac{d v}{d t}\right)+u\left(\frac{d v}{d x}\right)+v\left(\frac{d v}{d y}\right)+w\left(\frac{d v}{d z}\right) \\
& \mathrm{R}-\frac{\mathrm{r}}{q}\left(\frac{d p}{d z}\right)=\left(\frac{d w}{d t}\right)+u\left(\frac{d w}{d x}\right)+v\left(\frac{d u}{d y}\right)+w\left(\frac{d w}{d z}\right)
\end{aligned}
$$

Si nous ajoutons à ces trois équations premièrement celle, que nous a fournie la confidération de la continuité du fluide:

Si le fluide n'étoit pas compreffible, la denfité q feroit la même en Z, \& en \mathbf{Z}^{\prime}, \& pour ce cas on auroit cetre équation :

$$
\left(\frac{d u}{d x}\right)+\left(\frac{d v}{d y}\right)+\left(\frac{d w}{d z}\right)=0 .
$$

qui eft auffi celle fur laquelle j'ai établi mon Mémoire latin allégué ei-deffus.
tombent dans la furface même. Or nous voyons par là fuffifamment, combien nous fommes encore éloignés de la connoiffance complette du mouvement des fluides, \& que ce que je viens d'expliquer, n'en conrient qu'un foible commencement. Cependant tout ce que la Théorie des fluides renferme, eft contenu dans les deux équations rapportées cy-deffus (\oint. XXXIV.), de forte que ce ne font pas les principes de Méchanique qui nous manquent dans la pourfuite de ces recherches, mais uniquement l'Analyfe, qui n'eft pas encore affés cultivée, pour ce deffein : \& partant on voit clairement, quelles découvertes nous reftent encore à faire dans cette Science, avant que nous puiffions arriver à une Théorie plus parfaite du mouvement des fluides.

Euler's conclusion still correct after 264 years

The least action principle for the Euler equations

It amounts to looking for fields
$(t, x) \in \mathbb{R} \times \mathbb{R}^{d} \rightarrow(\rho, v)(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d}$, critical points

$$
\text { of } \int\left(\frac{\rho|v|^{2}}{2}-\Phi(\rho)\right) d x d t \quad\left(\text { where } r \phi^{\prime \prime}(r)=p^{\prime}(r)\right)
$$

The least action principle for the Euler equations

It amounts to looking for fields
$(t, x) \in \mathbb{R} \times \mathbb{R}^{d} \rightarrow(\rho, v)(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d}$, critical points

$$
\text { of } \int\left(\frac{\rho|v|^{2}}{2}-\Phi(\rho)\right) d x d t \quad\left(\text { where } r \phi^{\prime \prime}(r)=p^{\prime}(r)\right)
$$

subject to the 'continuity equation': $\partial_{t} \rho+\nabla \cdot(\rho v)=0$.

The least action principle for the Euler equations

It amounts to looking for fields
$(t, x) \in \mathbb{R} \times \mathbb{R}^{d} \rightarrow(\rho, v)(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d}$, critical points

$$
\text { of } \int\left(\frac{\rho|v|^{2}}{2}-\Phi(\rho)\right) d x d t \quad\left(\text { where } r \phi^{\prime \prime}(r)=p^{\prime}(r)\right)
$$

subject to the 'continuity equation': $\partial_{t} \rho+\nabla \cdot(\rho v)=0$.

Example: $p(r)=c^{2} r, \Phi(r)=c^{2} r(\log r-1)$.

The pressureless case and the Monge problem

In the limit case $p=0$, the action principle reads

$$
\operatorname{crit}\left(\int \frac{\rho|v|^{2}}{2} d x d t\right), \text { s.t. } \partial_{t} \rho+\nabla \cdot(\rho v)=0 .
$$

The pressureless case and the Monge problem

 In the limit case $p=0$, the action principle reads$$
\operatorname{crit}\left(\int \frac{\rho|v|^{2}}{2} d x d t\right), \text { s.t. } \partial_{t} \rho+\nabla \cdot(\rho v)=0 .
$$

So, we get a convex functional with a linear constraint in ($\rho, m=\rho \boldsymbol{v}$). So it makes sense to minimize over $t \in[0,1], \rho$ being prescribed at $t=0$ and $t=1$.

The pressureless case and the Monge problem

 In the limit case $p=0$, the action principle reads$$
\operatorname{crit}\left(\int \frac{\rho|v|^{2}}{2} d x d t\right), \text { s.t. } \partial_{t} \rho+\nabla \cdot(\rho v)=0 .
$$

So, we get a convex functional with a linear constraint in ($\rho, m=\rho v$). So it makes sense to minimize over $t \in[0,1], \rho$ being prescribed at $t=0$ and $t=1$. This is very different from the initial value problem and rather fits to the optimal transport problem of Monge (problème des déblais et des remblais, 1780, cf. books by Villani and Santambrogio).

The (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x,
$$ for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$.

The (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x
$$ for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$. Then, one can show:

Monge $_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{0}^{1} d t \int_{\mathbb{R}^{d}} \rho(t, x)|v(t, x)|^{2} d x$, where (ρ, v) is subject to $\partial_{t} \rho+\nabla \cdot(\rho v)=0, \quad \rho(0, \cdot)=\rho_{0} \rho(1, \cdot)=\rho_{1}$.
(Benamou-B. 2000, see also Otto 2001, Ambrosio-Gigli-Savaré 2005.)

The (quadratic) Monge OT problem

$$
\text { Monge }_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{\mathbb{R}^{d}}|T(x)-x|^{2} \rho_{0}(x) d x
$$

for all Borel maps T for which $\rho_{1}(y) d y$ is the image by $y=T(x)$ of $\rho_{0}(x) d x$.

Then, one can show:

Monge $_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{0}^{1} d t \int_{\mathbb{R}^{d}} \rho(t, x)|v(t, x)|^{2} d x$, where (ρ, v) is subject to $\partial_{t} \rho+\nabla \cdot(\rho v)=0, \quad \rho(0, \cdot)=\rho_{0} \rho(1, \cdot)=\rho_{1}$.
(Benamou-B. 2000, see also Otto 2001, Ambrosio-Gigli-Savaré 2005.)
N.B. Optimality equations read: $v=\nabla \phi, \quad \partial_{t} v+\nabla\left(|v|^{2} / 2\right)=0$.

Proposal: a matrix-valued generalization of OT

We look for 4×4 real matrix-valued fields $(C, V)(x, \xi)$ over the phase-space $(x, \xi) \in \mathbb{R}^{8}$, critical points of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

Proposal: a matrix-valued generalization of OT

We look for 4×4 real matrix-valued fields $(C, V)(x, \xi)$ over the phase-space $(x, \xi) \in \mathbb{R}^{8}$, critical points of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

subject to the 'generalized continuity equation'

$$
\partial_{x^{\prime}} C_{k}^{j}+\partial_{\xi^{\prime}}(C V+V C)_{k}^{j}=0
$$

Proposal: a matrix-valued generalization of OT

We look for 4×4 real matrix-valued fields $(C, V)(x, \xi)$ over the phase-space $(x, \xi) \in \mathbb{R}^{8}$, critical points of

$$
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi
$$

subject to the 'generalized continuity equation'

$$
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0
$$

and the linear symmetry constraints $\quad \partial_{\xi^{i}} V_{j}^{k}=\partial_{\xi^{j}} V_{i}^{k}$,

$$
\partial_{\xi^{m}} \boldsymbol{C}_{\gamma}^{\gamma} \delta_{k}^{j}-3 \partial_{\xi^{m}} \boldsymbol{C}_{k}^{j}=\partial_{\xi^{k}} \boldsymbol{C}_{\gamma}^{\gamma} \delta_{m}^{j}-3 \partial_{\xi^{k}} \boldsymbol{C}_{m}^{j}
$$

Theorem: Let (g, Γ) be a smooth solution to the Einstein equations in vacuum. Let us define

$$
\begin{gathered}
V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma} \\
C_{k}^{j}(x, \xi)=\partial_{\xi^{k}} A^{j}(x, \xi)-\partial_{\xi^{q}} A^{q}(x, \xi) \delta_{k}^{j} \\
A^{j}(x, \xi)=\xi^{j} \operatorname{det} g(x) \cos \left(\frac{g_{\alpha \beta}(x) \xi^{\alpha} \xi^{\beta}}{2}\right) .
\end{gathered}
$$

Then (C, V) solves the matrix-valued OT problem.
ref: to appear in CRAS, https://hal.archives-ouvertes.fr/hal-03311171

Comment: Einstein vs Monge

$$
(x, \xi) \in \mathbb{R}^{4+4} \Leftarrow(t, x) \in \mathbb{R}^{1+d} ; C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x)
$$

Comment: Einstein vs Monge

$$
\begin{aligned}
& (x, \xi) \in \mathbb{R}^{4+4} \Leftarrow(t, x) \in \mathbb{R}^{1+d} ; C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
& \partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0 \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0,
\end{aligned}
$$

Comment: Einstein vs Monge

$$
\begin{gathered}
(x, \xi) \in \mathbb{R}^{4+4} \Leftarrow(t, x) \in \mathbb{R}^{1+d} ; C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0 \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0 \\
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi \Leftarrow \int \rho|V|^{2} d x d t .
\end{gathered}
$$

Comment: Einstein vs Monge

$$
\begin{gathered}
(x, \xi) \in \mathbb{R}^{4+4} \Leftarrow(t, x) \in \mathbb{R}^{1+d} ; C_{k}^{j}(x, \xi) \Leftarrow \rho(t, x) \\
\partial_{x^{j}} C_{k}^{j}+\partial_{\xi^{j}}(C V+V C)_{k}^{j}=0 \Leftarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
\int \operatorname{trace}\left(C(x, \xi) V^{2}(x, \xi)\right) d x d \xi \Leftarrow \int \rho|V|^{2} d x d t .
\end{gathered}
$$

Remark: as a by-product, we also found a strikingly similar OT form of the (free) Schrödinger equation (based on the 'Madelung transform'):

We look for complex fields $\left(C, V_{1}, \cdots, V_{d}\right)(t, x)$ over space-time $(t, x) \in \mathbb{R} \times \mathbb{R}^{d}$, critical points of

$$
\int \sum_{k=1}^{d} \operatorname{Re}\left(C(t, x) V_{k}^{2}(t, x)\right) d t d x
$$

Remark: as a by-product, we also found a strikingly similar OT form of the (free) Schrödinger equation (based on the 'Madelung transform'):

We look for complex fields $\left(C, V_{1}, \cdots, V_{d}\right)(t, x)$ over space-time $(t, x) \in \mathbb{R} \times \mathbb{R}^{d}$, critical points of

$$
\int \sum_{k=1}^{d} \operatorname{Re}\left(C(t, x) V_{k}^{2}(t, x)\right) d t d x
$$

subject to the complex 'dispersive' continuity equation

$$
\partial_{t} C+\sum_{k=1}^{d} \partial_{x^{k}}\left(C V_{k}\right)+i \Delta C=0
$$

Back to General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4},

Back to General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4}, which reads

$$
\begin{gathered}
\frac{d x^{i}(s)}{d s}=\xi^{i}(s), \quad \frac{d \xi^{i}(s)}{d s}=-\Gamma_{j k}^{i}(x(s)) \xi^{j}(s) \xi^{k}(s) \\
2 g_{m i} \Gamma_{j k}^{i}+\partial_{m} g_{j k}-\partial_{j} g_{m k}-\partial_{k} g_{m j}=0
\end{gathered}
$$

Back to General Relativity (in vacuum)

'Free fall' follows geodesic curves $s \in \mathbb{R} \rightarrow x(s) \in \mathbb{R}^{4}$
i.e. critical points of $\int g_{i j}(x(s)) \frac{d x^{i}(s)}{d s} \frac{d x^{j}(s)}{d s} d s$
where g is a Lorentzian metric over \mathbb{R}^{4}, which reads

$$
\begin{gathered}
\frac{d x^{i}(s)}{d s}=\xi^{\prime}(s), \quad \frac{d \xi^{\prime}(s)}{d s}=-\Gamma_{j k}^{j}(x(s)) \xi^{j}(s) \xi^{k}(s), \\
2 g_{m i} \Gamma_{j k}^{j}+\partial_{m} g_{j k}-\partial_{j} g_{m k}-\partial_{k} g_{m j}=0 .
\end{gathered}
$$

Einstein equations in vacuum just means that g has zero Ricci curvature.

OT form of GRV: some ingredients of the proof

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$,

OT form of GRV: some ingredients of the proof

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:
$R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x^{j}}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi)$

OT form of GRV: some ingredients of the proof

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:
$R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x^{j}}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi)$

$$
=\partial_{x^{k}} V_{j}^{n}+\partial_{\xi^{\prime}}\left(V_{k}^{\gamma} V_{\gamma}^{n}\right)-\partial_{x^{j}} V_{k}^{n}-\partial_{\xi^{k}}\left(V_{i}^{\gamma} V_{\gamma}^{n}\right),
$$

OT form of GRV: some ingredients of the proof

Key idea: view Γ as a collection of 4 vector fields over the phase space $(x, \xi) \in \mathbb{R}^{8}$ which are linear in ξ : $V_{k}^{j}(x, \xi)=-\Gamma_{k \gamma}^{j}(x) \xi^{\gamma}$, so that the Riemann and the Ricci curvatures just read as commutators:

$$
\begin{gathered}
R_{j k m}^{n}(x) \xi^{m}=\left(\left(\partial_{x^{k}}+V_{k}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{j}^{n}-\left(\partial_{x^{j}}+V_{j}^{\gamma} \partial_{\xi^{\gamma}}\right) V_{k}^{n}\right)(x, \xi) \\
=\partial_{x^{k}} V_{j}^{n}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{n}\right)-\partial_{x^{\prime}} V_{k}^{n}-\partial_{\xi^{k}}\left(V_{i}^{\gamma} V_{\gamma}^{n}\right), \\
R_{k m}(x) \xi^{m}=\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{j}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x j} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right) .
\end{gathered}
$$

The zero-Ricci curvature 'phase-space' equation

$$
\partial_{x^{k}} V_{j}^{j}+\partial_{\xi^{\prime}}\left(V_{k}^{\gamma} V_{\gamma}^{j}\right)-\partial_{x^{j}} V_{k}^{j}-\partial_{\xi^{k}}\left(V_{j}^{\gamma} V_{\gamma}^{j}\right)=0
$$

is going to play for GRV the role taken by the multiD Burgers equation $\partial_{t} v+\nabla\left(|v|^{2} / 2\right)=0$ for the quadratic OT problem in its hydrodynamical form.

A toy model : the multiD Burgers equation (1/4)

$$
\partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0, \quad V=V(t, x) \in \mathbb{R}^{d}
$$

A toy model : the multiD Burgers equation (1/4)

$$
\partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0, \quad V=V(t, x) \in \mathbb{R}^{d}
$$

Ignoring $B C$, let us look for critical points (A, V) of
$\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t, \quad A=A(t, x) \in \mathbb{R}^{d}$.

A toy model : the multiD Burgers equation (2/4)

Critical points (A, V) of

$$
\begin{aligned}
& \mathcal{I}(A, V)=\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t . \\
& \partial_{A} \mathcal{I}(A, V)=0 \Rightarrow \text { (1) } \quad \partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0
\end{aligned}
$$

(as expected),

A toy model : the multiD Burgers equation (2/4)

Critical points (A, V) of

$$
\begin{aligned}
& \mathcal{I}(A, V)=\int\left(-\partial_{t} A \cdot V-\frac{(\nabla \cdot A)|V|^{2}}{2}\right) d x d t \\
& \partial_{A} \mathcal{I}(A, V)=0 \Rightarrow(1) \quad \partial_{t} V+\nabla\left(\frac{|V|^{2}}{2}\right)=0
\end{aligned}
$$

(as expected),

$$
\partial_{V} \mathcal{I}(A, V)=0 \Rightarrow \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0
$$

(additional information that we are now going to use).

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2).

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$.

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

Assuming that (A, V) is critical for $\mathcal{I}(A, V)$, we have
$\partial_{t} A+V(\nabla \cdot A)=0$ and $\partial_{t} V+\nabla\left(|V|^{2} / 2\right)=0$.

A toy model : the multiD Burgers equation (3/4)

We use (2) $\partial_{t} A+V(\nabla \cdot A)=0$ to rewrite $\mathcal{I}(A, V)$ as:

$$
\mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t
$$

Claim: whenever (A, V) is critical for $\mathcal{I}(A, V)$, then (A, V) is also critical for $\mathcal{I}_{2}(A, V)$, but subject to (2). Proof: Let us introduce Lagrangian $\mathcal{L}(A, V, B)=\mathcal{I}_{2}(A, V)-\int B \cdot\left(\partial_{t} A+V(\nabla \cdot A)\right)$. The corresponding optimality equations read:
$\partial_{B} \mathcal{L}(A, V, B)=0 \Rightarrow(2)$ (of course), $\partial_{V} \mathcal{L}(A, V, B)=0 \Rightarrow(\nabla \cdot A) V-B(\nabla \cdot A)=0$, $\partial_{A} \mathcal{L}(A, V, B)=0 \Rightarrow-\nabla\left(|V|^{2} / 2\right)+\partial_{t} B+\nabla(B \cdot V)=0$.

Assuming that (A, V) is critical for $\mathcal{I}(A, V)$, we have
$\partial_{t} A+V(\nabla \cdot A)=0$ and $\partial_{t} V+\nabla\left(|V|^{2} / 2\right)=0$. Setting $B=V$, we are just in business!

A toy model : the multiD Burgers equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t .
\end{aligned}
$$

A toy model : the multiD Burgers equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t .
\end{aligned}
$$

So, we just recover OT in its hydrodynamical form.

A toy model : the multiD Burgers equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0, \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t .
\end{aligned}
$$

So, we just recover OT in its hydrodynamical form. We may now use the same method for GRV, starting from the zero Ricci curvature equation.

A toy model : the multiD Burgers equation (4/4)

Let us now write everything in terms of $(\rho=\nabla \cdot A, V)$:

$$
\begin{aligned}
& \text { (2) } \partial_{t} A+V(\nabla \cdot A)=0 \Rightarrow \partial_{t} \rho+\nabla \cdot(\rho V)=0 \\
& \mathcal{I}_{2}(A, V)=\int \frac{(\nabla \cdot A)|V|^{2}}{2} d x d t \Rightarrow \int \frac{\rho|V|^{2}}{2} d x d t
\end{aligned}
$$

So, we just recover OT in its hydrodynamical form. We may now use the same method for GRV, starting from the zero Ricci curvature equation. MERCI ET BONNE SUITE A MAGA!

