Strong c-concavity and stability in optimal transport

MAGA Days

Anatole Gallouet

Quentin Mérigot Boris Thibert

2,3,4 February 2022

Laboratoire Jean Kuntzmann, Grenoble

Outline

- 1. Introduction
- 2. Stability of transport maps under strong c-concavity
- 3. Sufficient condition for strong c-concavity
- 4. Reflector cost on the sphere

Introduction

Motivation

Numerical optimal transport naturally raises questions on the stability of the optimal transport maps with respect to the measures, namely if we approximate $T:\mu\to\nu$ by $\tilde T:\tilde\mu\to\tilde\nu$ we want

$$d(T, \tilde{T}) \leq d((\mu, \nu), (\tilde{\mu}, \tilde{\nu}))$$

Some stability results in optimal transport:

- (Ambrosio Gigli '09) Local stability near Lipschitz transport map
- (Berman '18) Global stability
- (Merigot Delalande Chazal '19) Global stability, independant of dimension
- (Li Nochetto '20) Local stability with discretization of both source and target

Local stability with respect to target measure

Theorem (Ambrosio-Gigli '09)

Let \mathcal{X} and \mathcal{Y} be compact domains of \mathbb{R}^d . Let $i \in \{0,1\}$ and $T_i : \mathcal{X} \to \mathcal{Y}$ optimal transports maps between measures μ to ν_i for the cost $c(x,y) = \|x - y\|^2$. Assuming that μ and ν_0 are absolutely continuous and T_0 is K-Lipschitz, then

$$\|T_1 - T_0\|_{L^2(\mu)}^2 \le 4M_{\mathcal{X}}KW_1(\nu_0, \nu_1)$$

- The map T_0 is K-Lipschitz if and only if its associated potential $\psi_0: \mathcal{Y} \to \mathbb{R}$ is 1/K strongly convex. It typically implies that $\operatorname{spt}(\nu_0)$ is connected.
- (Li-Nochetto '20) have a similar result with a discretization of both measures.

Global stability

Theorem (Berman 18')

Assume μ is the Lebesgue measure on $\mathcal X$ convex and compact, and $\nu_0, \nu_1 \in \mathcal P(\mathcal Y)$ with $\mathcal Y$ compact. Then

$$\|T_1 - T_0\|_{L^2(\mu)}^2 \le CW_1(
u_0,
u_1)^{lpha} \quad \textit{with} \quad lpha = rac{1}{2^{d-1}(d+1)}$$

- ullet (Merigot Delalande Chazal '19) Have the same result with lpha=1/6
- Open problem: Can $\alpha = 1/6$ be upgraded ? The theoretical bound is 1/2.

Framework

Here we work on manifolds instead of domains, and cost functions that are not necessarly the squared distance:

- $M, N \subset \mathbb{R}^n$ be two d dimensionnal manifolds and $c: M \times N \to \mathbb{R}$.
- $\mu \in \mathcal{P}(M)$, $\nu \in \mathcal{P}(N)$ are two absolutely continuous measures
- $\mathcal{X} = \operatorname{spt}(\mu)$ and $\mathcal{Y} = \operatorname{spt}(\nu)$ are two compact set
- ullet $T:\mathcal{X}
 ightarrow\mathcal{Y}$ is a transport map if $T_{\#}\mu=
 u$
- $c \in C^4(D)$ with $D \subset M \times N$ compact and $\mathcal{X} \subset \operatorname{proj}_M(D)$, $\mathcal{Y} \subset \operatorname{proj}_N(D)$

c-transforms, c-superdifferential and c-concavity

Definition (c-transform)

Let $\varphi: \mathcal{X} \to \mathbb{R}$ and $\psi: \mathcal{Y} \to \mathbb{R}$

$$\varphi^{c}(y) = \inf_{x \in \mathcal{X}} c(x, y) - \varphi(x)$$
 $\psi^{c}(x) = \inf_{y \in \mathcal{Y}} c(x, y) - \psi(y)$

Definition (c-superdifferential)

$$\partial^{c} \psi(y) = \{ x \in \mathcal{X} | \psi^{c}(x) + \psi(y) = c(x, y) \}$$

Definition (*c*-concavity)

We say that $\psi: \mathcal{Y} \to \mathbb{R}$ is c-concave if there exists $\phi: \mathcal{X} \to \mathbb{R}$ such that $\psi = \phi^c$, which means that for any $y \in \mathcal{Y}$, $\psi(y) = \inf_{x \in \mathcal{X}} c(x, y) - \phi(x)$.

Strong c-concavity

Note that ψ c-concave implies $\forall y : \partial^c \psi(y) \neq \emptyset$

Definition (strong *c***-concavity)**

We say that a c-concave function $\psi: \mathcal{Y} \to \mathbb{R}$ is strongly c-concave with modulus ω if for all $y, z \in \mathcal{Y}$, and $x \in \partial^c \psi(y)$

$$\psi(z) \leq \psi(y) + c(x,z) - c(x,y) - \omega(y,z)$$

where
$$\partial^c \psi(y) = \{x \in \mathcal{X} | \psi^c(x) + \psi(y) = c(x, y)\}$$

For $c(x,y) = -\langle x|y\rangle$ and $\omega(y,z) = C \|y-z\|^2$, we have $\partial^c \psi(y) = \nabla \psi(y)$ which gives

$$\psi(z) \le \psi(y) + \langle \nabla \psi(y) | y - z \rangle - C \|y - z\|^2$$

Stability of transport maps under strong c-concavity

Local stability with respect to target

Theorem (Generalizes Ambrosio-Gigli '09)

 $T_i: \mathcal{X} \to \mathcal{Y}$ optimal transports maps from μ to ν_i , associated with c-concave potentials $\psi_i: \mathcal{Y} \to \mathbb{R}$ with Lipshitz constant L. ψ_1 strongly c-concave with modulus ω . Then we have

$$\int_{\mathcal{X}} \omega(T_0(x), T_1(x)) d\mu(x) \leq 2LW_1(\nu_0, \nu_1)$$

In particular if $\omega(y,z) = C \|y-z\|^2$ for some C > 0, then the results writes

$$||T_1 - T_0||_{L^2(\mu)}^2 \le \frac{2L}{C} W_1(\nu_0, \nu_1)$$

Let
$$A = \int_{\mathcal{Y}} \psi_1 d(\nu_1 - \nu_0)$$
 and $B = \int_{\mathcal{Y}} \psi_0 d(\nu_0 - \nu_1)$.
Since $T_{i\#}\mu = \nu_i$ and $x \in \partial^c \psi_i(T_i(x))$ we have by c-concavity
$$A = \int_{\mathcal{X}} \psi_1(T_1(x)) d\mu(x) - \int_{\mathcal{X}} \psi_1(T_0(x)) d\mu(x)$$

$$\geq \int_{\mathcal{X}} c(x, T_1(x)) - c(x, T_0(x)) + \omega(T_0(x), T_1(x)) d\mu$$

$$B \geq \int_{\mathcal{X}} -c(x, T_1(x)) + c(x, T_0(x)) d\mu$$

$$\int_{\mathcal{X}} \omega(T_0(x), T_1(x)) d\mu(x) \leq \int_{\mathcal{Y}} \psi_1 - \psi_0 d(\nu_1 - \nu_0) \leq \max_{\mathrm{Lip}(f) \leq 2L} \int_{\mathcal{Y}} f d(\nu_1 - \nu_0)$$

$$\leq 2L \max_{\mathrm{Lip}(f) \leq 1} \int_{\mathcal{Y}} f d(\nu_1 - \nu_0) \leq 2LW_1(\nu_0, \nu_1)$$

Stability of transport plans

Theorem (Li-Nochetto '20)

Let \mathcal{X} and \mathcal{Y} be domains of \mathbb{R}^d . Let $\varphi: \mathcal{X} \to \mathbb{R}$ such that $T:=\nabla \varphi$ is an optimal transport map between absolutely continuous measures μ and ν , and assume that φ^* is $1/\lambda$ strongly convex. Then for any $\gamma \in \Gamma(\mu, \nu)$:

$$\int_{\mathcal{X}\times\mathcal{Y}} \|y - T(x)\|^2 d\gamma(x,y) \le \lambda \left(\int_{\mathcal{X}\times\mathcal{Y}} \|x - y\|^2 d\gamma(x,y) - \int_{\mathcal{X}} \|T(x) - x\|^2 d\mu(x) \right)$$

- Similar to (Ambrosio Gigli '09), but for transport plans
- ullet Left hand size is a distance between T and γ

Stability of transport plans

Theorem (Generalizes Li-Nochetto 20)

Let $T: \mathcal{X} \to \mathcal{Y}$ optimal transport map from μ to ν , with associated potential $\psi: \mathcal{Y} \to \mathbb{R}$ strongly c-concave with modulus ω . Then for any $\gamma \in \Gamma(\mu, \nu)$:

$$\int_{\mathcal{X}\times\mathcal{Y}}\omega(T(x),y)d\gamma(x,y)\leq \int_{\mathcal{X}\times\mathcal{Y}}c(x,y)d\gamma(x,y)-\int_{\mathcal{X}}c(x,T(x))d\mu(x)$$

Corollary

For any transport map $\widetilde{T}:\mathcal{X} o\mathcal{Y}$ between μ and u, if $\omega(y,z)=C\left\|y-z\right\|^2$

$$C \left\| T - \widetilde{T} \right\|_{L^2(\mu)}^2 \leq \int_{\mathcal{X}} c(x, \widetilde{T}(x)) d\mu(x) - \int_{X} c(x, T(x)) d\mu(x)$$

$$0 = \int_{\mathcal{Y}} \psi(y) d\nu(y) - \int_{\mathcal{X}} \psi(T(x)) d\mu(x)$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \psi(y) - \psi(T(x)) d\gamma(x, y)$$

$$\leq \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) - c(x, T(x)) - \omega(T(x), y) d\gamma(x, y)$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma(x, y) - \int_{\mathcal{X}} c(x, T(x)) d\mu(x) - \int_{\mathcal{X} \times \mathcal{Y}} \omega(T(x), y) d\gamma(x, y)$$

Sufficient condition for strong c-concavity

Some important notions

Definition (c-exponential)

For
$$x \in M$$
, $\operatorname{c-exp}_x = (-\nabla_x c(x, \cdot))^{-1}$

Definition (c-segment)

$$y_t = \operatorname{c-exp}_{\scriptscriptstyle X}((1-t)p_0 + tp_1)$$

$$p_0 = (-\nabla_x c)^{-1}(x, y_0) \in T_x M$$
 and $p_1 = (-\nabla_x c)^{-1}(x, y_1) \in T_x M$

Definition (symmetrically c-convex set)

Let $A \subset \mathcal{Y}$. $D \subset M \times N$ is symmetrically c-convex if for any $(x_0, y_0) \in D$ and $(x_1, y_1) \in D$:

$$[x_0, x_1]_{y_0} \subset D$$
 and $[y_0, y_1]_{x_0} \subset D$

MTW Tensor

Assume $c \in C^4(D)$, The Ma-Trudinger-Wang tensor is defined for $(x_0, y_0) \in D$ and $(\zeta, \eta) \in T_x M \times T_y N$ by

$$\mathfrak{S}_{c}(x_{0}, y_{0})(\zeta, \eta) = -\frac{3}{2} \frac{\partial^{2}}{\partial p_{\hat{\eta}}^{2}} \frac{\partial^{2}}{\partial x_{\zeta}^{2}} \left(c(x, c-\exp_{x_{0}}(p)) \right) \Big|_{x=x_{0}, p=-\nabla_{x} c(x_{0}, y_{0})}$$

with $\hat{\eta} = -\nabla^2_{xy} c(x_0, y_0) \eta$.

Definition (Weak MTW hypothesis)

 $\exists C > 0$ such that $\mathfrak{S}_c(x,y)(\eta,\xi) \ge -C|\langle \eta|\xi\rangle| \|\eta\| \|\xi\|$.

Definition (STwist)

The cost satisfies the strong Twist condition (STwist) if c is C^2 , $\nabla_x c$ is one-to-one and $D_{xy}^2 c$ is non singular.

Differential criterion for c-convexity

Theorem (Villani 12.46)

Let $c: M \times N \to \mathbb{R}$ such that c and \check{c} satisfies (STwist) and c is \mathcal{C}^4 on a set closed D which is symmetrically c-convex. We assume that weak MTW is satisfied on D. Let $\psi \in \mathcal{C}^2(\mathcal{Y}, \mathbb{R})$ with $\mathcal{Y} \subset \operatorname{proj}_N(D)$. If for any $y \in \mathcal{Y}$, there exists x such that $(x,y) \in D$ and

$$\begin{cases} \nabla \psi(x) + \nabla_y c(x, y) = 0 \\ D^2 \psi(x) + D_{yy}^2 c(x, y) \ge 0 \end{cases}$$

Then ψ is c-convex on \mathcal{Y} .

- Local criterion for c-convexity
- Requires strong and global hypothesis

Criterion for strong c-concavity

Theorem (Strong c-concavity)

Let $D \subset M \times N$ be a symmetrically c-convex compact set. We assume that $c \in \mathcal{C}^4(D,\mathbb{R})$, that c and \check{c} satisfy (STwist) and that weak MTW is satisfied on D. Let $\psi \in \mathcal{C}^3(\mathcal{Y},\mathbb{R})$ such that the map $T: \mathcal{X} \to \mathcal{Y}$ defined by $T(x) = \operatorname{argmin}_y c(x,y) - \psi(y)$ is a diffeomorphism and satisfies for any $x \in \mathcal{X}$, $(x,T(x)) \in D$.

Then ψ is strongly c-concave with modulus $\omega(y,z) = C \|y-z\|^2$, i.e.

$$\forall y, z \in \mathcal{Y}, x \in \partial^{c} \psi(y) : c(x, y) - \psi(y) \le c(x, z) - \psi(z) - C \|y - z\|^{2}$$

Remark

This theorem is a natural development of Villani 12.46

Sketch of proof

- Let $h(t)=c(\bar x,y_t)-\psi(y_t)$ with $\bar x\in\partial^c\psi(\bar y)$, $y\in\mathcal Y$ and $y_t=[\bar y,y]_{\bar x}$
- We want $h(1) \ge h(0) + C \|y \bar{y}\|^2 \iff \int_0^1 \dot{h}(t) dt \ge C \|y \bar{y}\|^2$
- $\dot{h}(t) = \langle \nabla^2_{xy} c^{-1}.\eta | \zeta \rangle$ and $\ddot{h}(t) = (D^2 \psi(y_t) + D^2_{yy} c(x_t, y_t))(\eta, \eta) + \int_0^1 \mathfrak{S}_c(\cdots)$
- T diffeomorphism + MTW weak $\implies \ddot{h}(t) \ge \lambda \|\eta\|^2 C\dot{h}(t)$.
- ullet By compactness arguments, $\|\eta\| \geq C \|y ar{y}\|$
- Conclude by Grönwall's lemma.

Reflector cost on the sphere

Optimal transport on the sphere

Lemma

Let $M=N=\mathbb{S}^{d-1}$ and $c=-\ln(1-\langle x|y\rangle)$. Let μ and ν be asolutely continuous measures and $\beta>0$ such that $M(\beta)\leq 1/8$ where

$$M(\beta) = \sup_{x \in \mathbb{S}^{d-1}} (\mu(B(x,\beta)), \nu(B(x,\beta)))$$

Then the stability theorems applies.

Proof

- c is C^4 on $M^2 \setminus \Delta$ with $\Delta = \{(x, x), x \in S^{d-1}\}$ and satisfies weak MTW.
- Δ is repulsive i.e. $c(x,x) = +\infty$.
- $D_{\varepsilon} = \{(x,y) \in M | \|x-y\| \ge \varepsilon\}$ is a symmetrically c-convex compact set.
- Let $\gamma \in \Gamma(\mu, \nu)$ optimal, then $\operatorname{spt}(\gamma) \subset D_{\varepsilon}$.