TD 1: Points extrémaux et stricte convexité

Exemples: enveloppes convexes, cônes

Exercice 1. Soit K un sous-ensemble d'un evn vérifiant : $x, y \in K \Rightarrow \frac{1}{2}(x+y) \in K$.

- 1 Montrer par un exemple que K n'est pas forcément convexe.
- 2 Montrer que si de plus K est fermé, alors K est convexe.

Exercice 2. On s'intéresse à l'enveloppe convexe d'une union de convexes.

- 1 Pour deux convexes K, L, montrer: $\operatorname{conv}(K \cup L) = \{(1 \alpha)x + \alpha y \mid (x, y, \alpha) \in K \times L \times [0, 1]\}$.
- **2** Étant donnés des convexes K_1, \ldots, K_n , montrer que

$$\operatorname{conv}(K_1 \cup \ldots \cup K_n) = \left\{ \alpha_1 x_1 + \ldots + \alpha_n x_n \mid \forall i \in \{1, \ldots, n\}, \ x_i \in K_i, \ \alpha_i \ge 0 \text{ et } \sum_{i=1}^n \alpha_i = 1 \right\}.$$

Exercice 3. Soient $(K_n)_{n\in\mathbb{N}}$ une famille croissante de convexe, c'est-à-dire que $K_n\subseteq K_{n+1}$. Montrer que l'union $K=\bigcup_{n\in\mathbb{N}}K_n$ est convexe. \(^1

Définition. Un sous-ensemble C d'un espace vectoriel E est appelé $c\hat{o}ne$ convexe s'il est convexe et positivement homogène (c'est-à-dire $\forall x \in C, \forall \lambda \geq 0, \quad \lambda x \in C$).

Exercice 4. Soit X un sous-ensemble d'un espace vectoriel E et $x_0 \in X$. On pose

$$X_{x_0} = \{ v \in E \mid \exists t > 0, [x_0, x_0 + tv] \subseteq X \}.$$

- 1 Montrer que si A est affine et $x_0 \in A$, alors A_{x_0} est un sous-espace vectoriel de E.
- **2** Montrer que pour tout sous-ensemble $X \subseteq E$ et $x_0 \in X$, $X_{x_0} = \bigcup_{t \ge 0} \frac{1}{t}(X x_0)$.
- **3** En utilisant l'exercice précédent, montrer que si K est convexe et $x_0 \in K$, alors K_{x_0} est un cône convexe (appellé *cône tangent* à K en x_0).

Exercice 5. On appelle enveloppe conique d'un sous-ensemble X d'un e.v. E l'ensemble

$$\operatorname{cone}(X) = \bigcap_{\substack{C \subseteq E \text{ cone convexe} \\ X \subseteq C}} C.$$

- 1 Montrer que cone(X) est un cône convexe contenant X.
- **2** Montrer que cone $(X) = \{\alpha_1 x_1 + \ldots + \alpha_k x_k \mid k \ge 1, x_i \in X, \ \alpha_i \ge 0\}$.

Points extrémaux d'un ensemble convexe

Définition. Un point x d'un convexe K est dit extrémal s'il ne peut pas s'écrire comme combinaison convexe non triviale d'éléments de deux éléments de K, i.e. $\nexists(y,z,\alpha) \in K \times K \times [0,1[$ tel que $(1-\alpha)y + \alpha z = x$. L'ensemble des points extrémaux de K est noté ext(K).

Exercice 6. Soit A une partie d'un espace vectoriel normé, et K = conv(A). Montrer que tout point extrémal de K appartient à A. (Indication: montrer que si $x \in K \setminus A$, alors $x \notin \text{ext}(K)$).

^{1.} Cette propriété est bien sûr fausse sans supposer la croissance, penser à l'union de deux boules.

Définition 1. Un convexe K d'un espace vectoriel normé est dit *strictement convexe* si $\forall x \neq y \in K, \forall \alpha \in]0,1[, (1-\alpha)x + \alpha y \in \text{int}(K).$

Exercice 7. Soit $(E, ||.||_E)$ un espace vectoriel normé.

- 1 Montrer que la boule unité fermée B de E est convexe. Montrer l'équivalence entre les propositions suivantes (montrer (i) \iff (ii) \iff (iii) puis (i) \iff (iv)) :
 - (i) B est strictement convexe;
 - (ii) $\forall x \neq y \in B, \forall \alpha \in]0,1[, \|(1-\alpha)x + \alpha y\| < 1;$
 - (iii) $\forall x \neq y \in E, \forall \alpha \in]0, 1[, \|(1 \alpha)x + \alpha y\| < \max(\|x\|, \|y\|);$
 - (iv) tout vecteur unitaire de E est un point extrémal de B.
- 2 Montrer que la boule unité d'un espace de Hilbert est strictement convexe. (Indication : utiliser (ii) et le cas d'égalité dans l'inégalité triangulaire ²
- **3** Pour $u \in \mathbb{R}^d$, on définit $||u||_1 = \sum_{1 \le i \le d} |u_i|$ et $||u||_{\infty} = \max_{1 \le i \le d} |u_i|$. Les boules unité pour ces normes sont-elles strictement convexes? Quels sont leurs points extrémaux?

Correction: Soit B la boule unité pour $\|.\|_{\infty}$. On commence par démontrer une condition nécessaire : si $x \in B$ est tel que $-1 < x_i < 1$, alors x n'est pas extrémal. En effet, soit $\delta = 1 - |x_i|$ et $y_{\pm} = x \pm \delta e_i$. Alors $y_{+} \neq y_{-} \in B$ et $\frac{1}{2}(y_{-} + y_{+}) = x$, et x n'est donc pas extrémal. Ainsi, $\operatorname{ext}(B) \subseteq \{-1,1\}^d$. Montrons l'inclusion réciproque : si $x_i = (1-\alpha)y_i + \alpha z_i$ avec $\alpha \in (0,1)$, alors $y_i \leq x_i \leq z_i$ ou $z_i \leq x_i \leq y_i$. Comme $|x_i|, |z_i| \leq 1$ et $|x_i| = 1$, on doit avoir $y_i = z_i = x_i$. Ainsi, x est extrémal, i.e. $\operatorname{ext}(B) = \{(\pm 1, \ldots, \pm 1)\}$.

Soit B la boule unité pour $\|.\|_1$. On commence par démontrer une condition nécessaire : si $x \in \partial B$ est tel que $x_i \notin \{-1,0,+1\}$, alors x n'est pas extrémal. En effet, cette hypothèse implique qu'il n'existe aucun j tel que $x_j \in \{\pm 1\}$ et comme $\sum_i |x_i| = 1$ il doit exister un $j \neq i$ tel que $x_j \notin \{-1,0,1\}$. Soit $\delta = \min(|x_i|, 1-|x_i|, |x_j|, 1-|x_j|)$ et $y_{\pm} = x \pm \delta e_i \mp \delta e_j$. Par construction, $y_{-,i}, y_{+,i}$ et x_i sont de même signe, d'où $|y_{\pm,i}| = |x_i| \pm \delta$, et de même $|y_{\pm,j}| = |x_j| \mp \delta$. Ceci implique que $|y_{\pm}|_1 = |x|_1 \le 1$ et $x = \frac{1}{2}(y_- + y_+)$, ce qui démontre que x n'est pas extrémal. On a donc établi que $\exp(B) \subseteq \{-1,0,1\}^d \cap B = : Z$, où $Z = \{\pm e_i\}$. Montrons l'inclusion réciproque : si $e_i = (1-\alpha)y + \alpha z$ avec $\alpha \in (0,1)$, alors $1 = (1-\alpha)y_i + \alpha z_i$, et on doit avoir $|z_i| > 1$ ou $|y_i| > 1$, i.e. $z \notin B$ ou $y \notin B$. Ceci montre l'extrémalité. Autrement dit $\exp(B) = \{\pm e_i\}$.

4 Mêmes questions pour $\mathcal{C}^0([0,1])$ muni de la norme $||f||_{\infty} = \max_{[0,1]} |f|$, puis $\mathrm{L}^1([0,1])$ muni de la norme $||f||_1 = \int_0^1 |f|$. L'égalité $K = \mathrm{conv}(\mathrm{ext}(K))$ est-elle vraie de manière générale ?

Correction: Soit B la boule unité de $C^0([0,1])$. On commence par montrer une condition nécessaire : si pour une fonction $f:[0,1]\to\mathbb{R}$ continue il existe $x_0\in[0,1]$ telle que $|f(x_0)|<1$, alors f n'est pas un point extrémal de B. En effet, soit $\delta=1-|f(x_0)|$. Par continuité, il existe $\varepsilon>0$ tel que $\forall x\in[x_0-\varepsilon,x_0+\varepsilon],|f(x)|<1-\delta/2$. Posons $\chi:[0,1]\to\mathbb{R}^+$ une fonction continue atteignant son maximum en x_0 telle que $\chi(x_0)=1$ et $\chi([0,1]\setminus[x_0-\varepsilon,x_0+\varepsilon]=0$ (on peut construire fonction affine par morceaux vérifiant ces conditions). On pose $f_\pm=f\pm\frac{\delta}{2}\chi$. Par hypothèse, $||f_\pm||_\infty\leq 1$, et $f=\frac{1}{2}(f_-+f_+)$, et la fonction f n'est pas extrémale. Ainsi, on a montré que $\exp(B)\subseteq\{-1,1\}^{[0,1]}\cap B$. Or, les seules fonctions continues prenant uniquement les valeurs ± 1 sont les fonctions constantes $x\mapsto 1, x\mapsto -1$, dont on peut vérifier qu'elles sont extrémales. Ainsi, $\exp(B)=\{x\mapsto 1, x\mapsto -1\}$.

Soit B la boule unité de $L^1([0,1])$. On va montrer que ce convexe n'a aucun point extrémal.

^{2.} Attention! Ce cas d'égalité n'est vrai que pour une norme hilbertienne (ou plus précisément, préhilbertienne).)

Soit $f \in L^1([0,1])$ telle que $\int_{[0,1]} |f| = 1$. Par théorème des valeurs intermédiaires, il existe $x_0 \in (0,1)$ tel que $\int_{[0,x_0]} |f| = \frac{1}{2}$. On pose $f_+ = 2f\chi_{[0,x_0]}$ et $f_- = 2\chi_{[x_0,1]}$: ce sont deux fonctions de B distinctes, telles que $f = \frac{1}{2}(f^+ + f^-)$, établissant donc que f n'est pas extrémale. Ainsi, $\text{ext}(B) = \emptyset$.

Soit $M_n(\mathbb{R})$ l'espace vectoriel des matrices carrées de taille n, $S_n = \{S \in M_n(\mathbb{R}) \mid {}^tS = S\}$ le sous-espace formé des matrices symétriques et

$$\mathcal{S}_n^+ = \{ S \in \mathcal{S}_n \mid \forall x \in \mathbb{R}^n, \langle x | Sx \rangle \ge 0 \}.$$

On rappelle que matrice symétrique $S \in \mathcal{S}_n$ est diagonalisable dans une base orthonormale de vecteurs propres correspondant à des valeurs propres réelles $\lambda_1(S) \leq \ldots \leq \lambda_n(S)$.

Exercice 8. Soit $K = \{M \in \mathcal{S}_n^+ \mid \operatorname{tr}(M) = 1\}$

- 1 Montrer que K est un sous-ensemble convexe et compact de S_n .
- **2** Montrer que tout $S \in K$ peut s'écrire comme une combinaison convexe de matrices de la forme $S_x := x^{t}x$, où x est un vecteur colonne de \mathbb{R}^n unitaire.
- 3 (**) Montrer que les matrices S_x , sont des points extrémaux de K. (Indication: supposer que $S_x = (1 - \alpha)S_0 + \alpha S_1$ avec $S_0, S_1 \in K$ et $\alpha \in]0,1[$, en déduire que $\lambda_n(S_0) = \lambda_n(S_1) = 1$, puis que ces matrices sont de rang 1 et enfin que $S_0 = S_1 = S_x$).
- 4 En déduire K = conv(ext(K)).