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Abstract. In this article, we study the (d−1)-volume and the covering
numbers of the medial axis of a compact subset of Rd. In general, this
volume is infinite; however, the (d − 1)-volume and covering numbers
of a filtered medial axis (the µ-medial axis) that is at distance greater
than ε from the compact set can be explicitely bounded. The behaviour
of the bound we obtain with respect to µ, ε and the covering numbers
of K is optimal.

From this result we deduce that the projection function on a compact
subset K of Rd depends continuously on the compact set K, in the L1

sense. This implies in particular that Federer’s curvature measures of a
compact subset of Rd with positive reach can be reliably estimated from
a Hausdorff approximation of this subset, regardless of any regularity
assumption on the approximating subset.

1. Introduction

We are interested in the following question: given a compact set K with
positive reach, and a discrete approximation, is it possible to approximate
Federer’s curvature measures of K (see [10] or §2.2 for a definition) knowing
the discrete approximation only ? A positive answer to this question has
been given in [8] using convex analysis. In this article, we show that such a
result can also be deduced from a careful study of the “size” — that is the
covering numbers — of the medial axis.

The notion of medial axis, also known as ambiguous locus in Riemannian
geometry, has many applications in computer science. In image analysis
and shape recognition, the skeleton of a shape is often used as an idealized
version of the shape [18], that is known to have the same homotopy type
as the original shape [15]. In the reconstruction of curves and surfaces from
point cloud approximations, the distance to the medial axis provides an
estimation of the size of the local features that can be used to give sampling
conditions for provably correct reconstruction [1]. The flow associated with
the distance function dK to a compact set K, that flows away from K toward
local maxima of dK (that lie in the medial axis of K) can be used for shape
segmentation [9]. The reader that is interested by the computation and
stability of the medial axis with some of these applications in mind can refer
to the survey [2].

The main technical ingredient needed for bounding the covering numbers
of the subsets of the medial axis that we consider is a Lipschitz regularity
result for the so-called normal distance to the medial axis τK : Rd \K → R.
It is defined as follows: if x belongs to the medial axis of K, then τK(x) = 0;
otherwise, τK(x) is the infimum time t such that x+ t∇xdK belongs to the
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medial axis of K. When K is a compact submanifold of class C2,1, this
function is globally Lipschitz on any r-level set of the distance function to
K, when the radius r is small enough [12, 14, 5]. When K is the analytic
boundary of a bounded domain Ω of R2, the normal distance to the medial
axis of ∂Ω is 2/3-Hölder on Ω [3].

However, without strong regularity assumption on the compact set K, it
is hopeless to obtain a global Lipschitz regularity result for τK on a parallel
set of K. Indeed, such a result would imply the finiteness of (d−1)-Hausdorff
measure of the medial axis, which is known to be false — for instance, the
medial axis of a generic compact set is dense.

We show however, that the normal distance to the medial axis is Lips-
chitz on a suitable subset of a parallel set. This enables us to prove the
following theorem on the covering numbers of the µ-medial axis (see §3.1 for
a definition):

Theorem 4.1. For any compact set K ⊆ Rd, a parameter ε smaller than
the diameter of K, and η small enough,

N
(

Medµ(K) ∩ (Rd \Kε), η
)
6 N (∂K, ε/2) O

([
diam(K)

η
√

1− µ

]d−1
)

From this theorem, we deduce a quantitative Hausdorff-stability results
for projection function, which is the key to the stability of Federer’s curva-
ture measure (see Proposition 2.2):

Theorem 5.1. Let E be a bounded open set of Rd. The application that
maps a compact subset of Rd to the projection function pK ∈ L1(E) is
locally h-Hölder, for any exponent h smaller than 1/(4d− 2).

Note that a similar result with a slightly better Hölder exponent has been
obtained in [8]. However, the proofs in this article are very different and give
a more geometric insight on the Hausdorff-stability of projection functions.
Nonetheless, the main contribution of this article lies in Theorem 4.1.

2. Boundary measures and medial axes

2.1. Distance, projection, boundary measures. Throughout this arti-
cle, K will denote a compact set in the Euclidean d-space Rd, with no addi-
tional regularity assumption unless specified otherwise. The distance func-
tion to K, denoted by dK : X → R+, is defined by dK(x) = minp∈K ‖p− x‖.
A point p of K that realizes the minimum in the definition of dK(x) is called
an orthogonal projection of x on K. The set of orthogonal projections of x
on K is denoted by projK(x).

The locus of the points x ∈ Rd which have more than one projection on
K is called the medial axis of K. Denote this set by Med(K). For every
point x of Rd not lying in the medial axis of K, we let pK(x) be the unique
orthogonal projection of x on K. This defines a map pK : Rd\Med(K)→ K,
which we will refer to as the projection function on the compact set K.

Definition 2.1. LetK be a compact subset and E be a measurable subset of
Rd. We will call boundary measure of K with respect to E the pushforward
of the restriction of the Lebesgue measure to E on K by the projection
function pK , or more concisely µK,E = pK# Hd

∣∣
E

.
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Figure 1. Medial axis of a curve C in the plane, and Voronoi
diagram of a point cloud P sampled on the curve.

We will be especially interested in the case where E is of the form Kr,
where Kr denotes the r-tubular neighborhood of K, i.e. Kr = d−1

K ([0, r]).

Example 2.1 (Steiner-Minkowski). If P is a convex solid polyhedron of
R3, F its set of faces, E its set of edges and V its set of vertices, then the
following formula holds:

µP,P r = H3
∣∣
P

+ r
∑
f∈F
H2
∣∣
f

+
1

2
r2
∑
e∈E

K(e) H1
∣∣
e

+
1

3
r3
∑
v∈V

K(v)δv

where K(e) is the angle between the normals of the faces adjacent to the
edge e, and K(v) the solid angle formed by the normals of the faces adjacent
to the vertex v.

For a general convex polyhedra the measure µK,Kr can similarly be writ-
ten as a sum of weighted Hausdorff measures supported on the i-skeleton of
K, whose local density is the local external dihedral angle.

Example 2.2 (Weyl). Let M be a compact smooth hypersurface of Rd,
and denote by σi(p) the ith elementary symmetric polynomial of the (d−1)
principal curvatures of M at a point p in M . Then, for any Borel subset B
of Rd, and r small enough, the µK,Kr -measure of B can be written as

µK,Kr(B) =

d−1∑
i=0

const(i, d)

∫
B∩M

σi(p)dM(p).

This formula can be generalized to submanifolds of any codimension [19].

2.2. Federer curvature measures and reach. Following Federer [10], we
will call reach of a compact subset K of Rd the smallest distance between
K and its medial axis, i.e. reach(K) = minx∈Med(K) dK(x).

Generalizing Steiner-Minkowski and Weyl tubes formula, Federer proved
that as long as r is smaller than the reach of K, the dependence in r of the
boundary measure µK,Kr is a polynomial in r, of degree bounded by the
ambient dimension d:
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Theorem 2.1 (Federer). For any compact set K ⊆ Rd with reach greater
than R, there exists (d+ 1) uniquely defined (signed) measures Φ0

K , . . . ,Φd
K

supported on K such that for any r 6 R,

µK,Kr =
d∑
i=0

ωd−iΦ
i
Kr

i

where ωk is the volume of the k-dimensional unit sphere.

These measures are uniquely defined and Federer calls them curvature
measures of the compact set K.

2.3. Stability of boundary and curvature measures. The question of
the stability of boundary measures is a particular case of the more gen-
eral question of geometric inference. Given a (discrete) approximation of a
compact subset K of Rd, what amount of geometry and topology of K is
it possible to recover ? In our case, the question is to bound the Wasser-
stein distance between the boundary measures of two compact subsets as a
function of their Hausdorff distance.

Recall that the Hausdorff distance between two compact subsets K and
K ′ is defined by dH(K,K ′) = ‖dK − dK′‖∞. The Wasserstein distance (of
exponent one) between two measures µ and ν with finite first moment on
Rd is defined by W1(µ, ν) = minX,Y E[‖X − Y ‖] where the minimum is
taken over all the couples of random variables X,Y whose law are µ and ν
respectively.

Proposition 2.2. Let E be an open subset and K,K ′ be two compact subsets
of Rd. Then,

W1

(
µK,E
Hd(E)

,
µK′,E
Hd(E)

)
6

1

Hd(E)
‖pK − pK′‖L1(E)

Proof. See [8, Proposition 3.1]. �

Hence, in order to obtain a Hausdorff stability result for boundary mea-
sures, one only needs to obtain a bound of the type ‖pK − pK′‖L1(E) =

o(dH(K,K ′)). The possibility to estimate Federer’s curvature measures from
a discrete approximation can also be deduced from a L1 stability result for
projection functions (see [8, §4]).

3. A first non-quantitative stability result

Intuitively, one expects that the projections pK(x) and pK′(x) of a point x
on two Hausdorff-close compact subsets can differ dramatically only if x lies
close to the medial axis of one of the compact sets. This makes it reasonable
to expect a L1 convergence property of the projections. However, since the
medial axis of a compact subset of Rd is generically dense (see [20] or [16,
Proposition I.2]), translating the above intuition into a proof isn’t completely
straightforward.
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3.1. Semi-concavity of dK and µ-medial axis. The semi-concavity of
the distance function to a compact set has been remarked and used in differ-
ent contexts [11, 17, 4, 15]. More precisely, we will use the fact that for any
compact subset K ⊆ Rd, the squared distance function to K is 1-concave.
This is equivalent to the function vK : Rd → R, x 7→ ‖x‖2 − d2

K(x) being
convex. Thanks to its semiconcavity one is able to define a notion of gener-
alized gradient for the distance function dK , that is defined even at points
where dK isn’t differentiable.

Given a compact set K ⊆ Rd, the subdifferential of the distance function
to K at a point x ∈ Rd is by definition the set of vectors v ∈ Rd such that

d2
K(x+ h) 6 d2

K(x) + 〈h|v〉 − ‖h‖2 (3.1)

for all h ∈ Rd. The subdifferential of dK at a point x is denoted by ∂xdK ,
it is the convex hull of the set {(p− x)/ ‖p− x‖ ; p ∈ projK(x)}.

The gradient ∇xdK of the distance function dK at a point x ∈ Rd is
defined as the vector of ∂xdK whose Euclidean norm is the smallest, or
equivalently as the projection of the origin on ∂xdK (see [17] or [15]). Given
a point x ∈ Rd, denote by γK(x) the center and rK(x) the radius of the
smallest ball enclosing the set of orthogonal projections of x on K. Then,

∇xdK =
x− γK(x)

dK(x)

‖∇xdK‖ =

(
1−

r2
K(x)

d2
K(x)

)1/2

= cos(θ)

(3.2)

where θ is the (half) angle of the cone joining x to B(γK(x), rK(x))

3.2. µ-Medial axis of a compact set. The notion of µ-medial axes and
µ-critical point of the distance function to a compact subset K of Rd were
introduced by Chazal, Cohen-Steiner and Lieutier in [6]. We recall the
definitions and properties we will need later.

A point x of Rd will be called a µ-critical point for the distance function
to K(with µ > 0), or simply a µ-critical point of K if for every h ∈ Rd,

d2
K(x+ h) 6 d2

K(x) + µ ‖h‖ dK(x) + ‖h‖2 .

By the definition of the subdifferential of dK (Eq. (3.1)), the point x is
µ-critical iff the norm of the gradient ‖∇xdK‖ is at most µ. The µ-medial
axis Medµ(K) of a compact set K ⊆ Rd is the set of µ-critical points of the
distance function. Is is easily seen that the medial axis is the union of all
µ-medial axes, with 0 6 µ < 1:

Med(K) =
⋃

06µ<1

Medµ(K).

Moreover, from the lower semicontinuity of the map x 7→ ‖∇xdK‖, one
obtains that for every µ < 1, the µ-medial axis Medµ(K) of K is a com-

pact subset of Rd. The main result of [6] that we will use is the following
quantitative critical point stability theorem.

Theorem 3.1 (Critical point stability theorem). Let K,K ′ be two compact
sets with dH(K,K ′) 6 ε. For any point x in the µ-medial axis of K, there
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exists a point y in the µ′-medial axis of K ′ with µ′ = µ + 2
√
ε/dK(x) and

‖x− y‖ 6 2
√
εdK(x).

3.3. A first non-quantitative stability result. The goal of this para-
graph is to prove the following non-quantitative L1 convergence result for
projections:

Proposition 3.2. If (Kn) Hausdorff converges to a compact K ⊆ Rd, then
for any bounded open set E, limn→+∞ ‖pKn − pK‖L1(E) = 0.

In order to do so, for any L > 0, and two compact sets K and K ′, we will
denote ∆L(K,K ′) the set of points x of Rd \ (K ∪ K ′) whose projections
on K and K ′ are at least at distance L, i.e. ‖pK(x)− pK′(x)‖ > L. For
technical reasons, we remove all points of the medial axes of K and K ′ from
∆L(K,K ′). Since the Lebesgue measure both medial axes vanishes, this
does not affect the measure of ∆L(K,K ′) .

A consequence of the critical point stability theorem is that ∆L(K,K ′)
lie close to the µ-medial axis of K for a certain value of µ (this Lemma is
similar to [7, Theorem 3.1]):

Lemma 3.3. Let L > 0 and K,K ′ be two compact sets and δ 6 L/2 denote
their Hausdorff distance. Then for any positive radius R, one has

∆L(K,K ′) ∩KR ⊆ Medµ(K)2
√
Rδ

with

µ =

(
1 +

[
L− δ

4R

]2
)−1/2

+ 4

√
δ

L

Proof. Let x be a point in ∆L(K,K ′) with dK(x) 6 R, and denote by p
and p′ its projections on K and K ′ respectively. By assumption, ‖p− p′‖ is
at least L. We let q be the projection of p′ on the sphere S(x,dK(x)), and
let K0 be the union of K and q. By hypothesis on the Hausdorff distance
between K and K ′, there exists a point p′′ in K such that ‖p′′ − p′‖ 6 δ.
By definition of the distance to K, ‖x− p′′‖ > dK(x): this means that
‖x− p′‖ > dK(x)− δ. Thus, because q is the projection of p′ on the sphere
S(x,dK(x)), the distance between p′ and q is at most δ. Hence, dH(K,K0)
is at most 2δ.

By construction, the point x has two projections on K0, and must belong
to the µ0-medial axis of K0 for some value of µ. Letting m be the midpoint
of the segment [p, q], we are able to upper bound the value of µ0:

µ2
0 6 ‖∇xdK0‖

2 6 cos

(
1

2
∠(p− x, q − x)

)2

= ‖x−m‖2 / ‖x− p‖2

Since p, q belong to the sphere B(x,dK(x)), one has (p− q) ⊥ (m− x) and

‖x− p‖2 = ‖x−m‖2 + 1
4 ‖p− q‖

2. This gives

µ0 6

(
1 +

1

4

‖p− q‖2

‖x−m‖2

)−1/2

6

[
1 +

(
L− δ

2R

)2
]−1/2

To get the second inequality we used ‖x−m‖ 6 R and ‖p− q‖ > L− δ.
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In order to conclude, one only need to apply the critical point stability
theorem (Theorem 3.1) to the compact sets K and K0 with dH(K,K0) 6
2δ. Since x is in the µ0-medial axis of K0, there should exist a point y in
Medµ(K) with ‖x− y‖ 6 2

√
Rδ and µ = µ0 + 4

√
δ/L. �

Proof of Proposition 3.2. Fix L > 0, and suppose K and K ′ are given. One
can decompose the set E between the set of points where the projections
differ by at least L (i.e. ∆L(K,K ′) ∩ E) and the remaining points. This
gives the bound:

‖pK′ − pK‖L1(E) 6 LH
d(E) +Hd(∆L(K,K ′) ∩ E) diam(K ∪K ′)

Now, take R = supE ‖dK‖, so that E is contained in the tubular neigh-
borhood KR, and fix L = ε/Hd(E). Then, for δ = dH(K,K ′) small enough
(e.g. less than some δ0), the value of µ given in Lemma 3.3 is smaller than
one. Denote by µ0 the value given by the lemma for δ0. Then

‖pK′ − pK‖L1(E) 6 ε+Hd(Medµ0(K)2
√
Rδ) diam(K ∪K ′) (3.3)

Being compact, Medµ0(K) is the intersection of its tubular neighborhoods.
Combining this with the outer-regularity of the Lebesgue measure gives:

lim
δ→0
Hd(Medµ0(K)2

√
Rδ) = Hd(Medµ0(K)) = 0.

Putting this limit in equation (3.3) concludes the proof. �

4. Size and volume of the µ-medial axis

From the proof of Proposition 3.2, one can see that a way to get a quanti-
tative stability of the projection functions is to control the volume of tubular
neighborhoods of some part of the µ-medial axis. Recall that the ε-covering
number of a subset X ⊆ Rd is the minimum number N of points x1, . . . , xN
such that X is contained in the union of balls ∪Ni=1B(xi, ε). The following
inequality is then straightforward:

Hd(Xε) 6 H(B(0, ε))N (X, ε) (4.4)

Our goal in this section is to obtain a bound on the covering numbers of
the considered part of the µ-medial axis (see Theorem 4.1) that will allow
to control the growth of the volume of its tubular neighborhoods.

Because of its compactness, one could expect that the µ-medial axis of
a well-behaved compact set will have finite Hd−1-measure. This is not the
case in general: if one considers a “comb”, i.e. an infinite union of parallel
segments of fixed length in R2, such as C = ∪i∈N∗ [0, 1] × {2−i} ⊆ R2 (see
Figure 2), the set of critical points of the distance fonction to C contains an
imbricate comb. Hence Hd−1(Medµ(C)) is infinite for any µ > 0.

However, for any positive ε, the set of points of the µ-medial axis of C that
are ε-away from C (that is Medµ(C)∩Rd \Cε) only contains a finite union of

segments, and has finite Hd−1-measure. The goal of this section is to prove
(quantitatively) that this remains true for any compact set. Precisely, we
have:
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Figure 2. The “comb” and a part of its medial axis (dotted)

Theorem 4.1. For any compact set K ⊆ Rd, ε 6 diam(K), and η small
enough,

N
(

Medµ(K) ∩ (Rd \Kε), η
)
6 N (∂K, ε/2) O

([
diam(K)

η
√

1− µ

]d−1
)

In particular, one can bound the (d− 1)-volume of the µ-medial axis

Hd−1
(

Medµ(K) ∩ (Rd \Kε)
)
6 N (∂K, ε/2) O

([
diam(K)√

1− µ

]d−1
)

Remark (Sharpness of the bound). Let x, y be two points at distance D in
Rd and K = {x, y}. Then, Med(K) is simply the medial hyperplane between
x and y. A point m in Med(K) belongs to Medµ(K) iff the cosine of the
angle θ = 1

2∠(x−m, y −m) is at most µ.

cos2(θ) = 1− ‖x− y‖
2

4d2
K(m)

= 1− diam(K)2

4d2
K(m)

Hence, cos(θ) > µ iff dK(m) 6 1
2 diam(K)/

√
1− µ2. Let z denote the

midpoint between x and y; then dK(m)2 = ‖z −m‖2 + diam(K)2/4. Then,
Medµ(K) is simply the intersection of the ball centered at z and of radius
1
2 diam(K)

√
µ2/(1− µ2) with the medial hyperplane. Hence,

Hd−1(Medµ(K)) = Ω

([
diam(K)µ2

√
1− µ

]d−1
)

This shows that the behaviour in diam(K) and µ of the theorem is sharp as
µ converges to one.

4.1. Outline of the proof. In order to obtain the bound on the covering
numbers of the 2ε-away µ-medial axis Medµ(K)∩(Rd\K2ε) given in Theorem
4.1, we prove that this set can be written as the image of a part of the level
set ∂Kε under the so-called normal projection on the medial axis ` : Rd\K →
Med(K).

The main difficulty is to obtain a Lipschitz regularity statement for the
restriction of the map ` to a suitable subset of ∂Kε. There is no such
statement for the whole surface ∂Kε in general. However, we are able to
introduce a subset Sεµ ⊆ ∂Kε whose image under ` cover the ε-away µ-medial
axis, and such that the restriction of ` to Sεµ is Lipschitz. This is enough to
conclude.
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4.2. Covering numbers of the µ-medial axis. We now proceed to the
proof of Theorem 4.1.

Definition 4.1. For any point x ∈ Rd, we define the normal distance of x
to the medial axis as τK(x) := inf{t > 0 ; x + t∇xdK ∈ Med(K)}. We will
set τK(x) to zero at any point in K or in the medial axis Med(K).

For any time t smaller than τ(x), we denote by Ψt
K(x) the point Ψt

K(x) =
x+ t∇xdK . Finally, for any x 6∈ K, we let `K(x) be the first intersection of
the half-ray starting at x with direction ∇xdK with the medial axis. More

precisely, we define `K(x) = Ψ
τ(x)
K (x) ∈ Med(K).

Lemma 4.2. Let m be a point of the medial axis Med(K) with d(x,K) > ε,
and x be a projection of m on ∂Kε. Then `(x) = m.

Proof. By definition of Kε, d(m,K) = d(m,Kε) + ε, so that the projection
p of x on K must also be a projection of m on K. Hence, m,x and p must
be aligned. Since the open ball B(m, d(m, p)) does not intersect K, for any
point y ∈]p,m[ the ball B(y, d(y, p)) intersects K only at p. In particular,
by definition of the gradient, ∇xdK must be the unit vector directing ]p,m[,
i.e. ∇xdK = (m − x)/d(m,x). Moreover, since [x, p[ is contained in the
complement of the medial axis, τ(x) must be equal to d(x,m). Finally one

gets Ψτ(x)(x) = x+ d(x,m)∇xdK = m. �

This statement means in particular that ε-away medial axis, that is the
intersection Med(K) ∩ (Rd \Kε), is contained in the image of the piece of
hypersurface {x ∈ ∂Kε ; τK(x) > ε} by the map `.

Recall that the radius of a set K ⊆ Rd is the radius of the smallest ball
enclosing K, while the diameter of K is the maximum distance between two
points in K. The following inequality between the radius and the diameter
is known as Jung’s theorem [13]: radius(K)

√
2(1 + 1/d) 6 diam(K).

Lemma 4.3. For any point m in the µ-medial axis Medµ(K), there exist two
projections x, y ∈ projK(m) of m on K such that the cosine of the angle

1
2∠(x−m, y −m) is smaller than

(
1+µ2

2

)1/2
.

Proof. We use the characterization of the gradient of the distance function
given in equation (3.2). If B(γK(m), rK(m)) denotes the smallest ball en-
closing projK(m), then µ2 > 1− r2

K(m)/d2
K(m). Using Jung’s theorem and

the definition of the diameter, there must exists two points x, y in projK(m)
whose distance r′ is larger than

√
2rK(m). The following bound on the

cosine of the angle θ = 1
2∠(x−m, y −m) concludes the proof:

cos2(θ) = 1− (r′/2)2

d2
K(m)

6 1− 1

2

r2
K(m)

d2
K(m)

6 (1 + µ2)/2 (4.5)

�

Lemma 4.4. The maximum distance from a point in Medµ(K) to K is

bounded by 1√
2

diam(K)/
(
1− µ2

)1/2
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Proof. Let x, y be two orthogonal projections of m ∈ Medµ(K) on K as
given by the previous lemma. Then, using equation (4.5), one obtains

1− ‖x− y‖
2 /4

d2
K(m)

6 (1 + µ2)/2.

Hence, d2
K(m) 6 1

2(1− µ2)−1 ‖x− y‖2, which proves the result. �

Let us denote by Sεµ the set of points x of the hypersurface ∂Kε that
satisfies the three conditions below:

(i) the normal distance to the medial axis is bounded below: τ(x) > ε ;
(ii) the image of x by ` is in the µ-medial axis of K: `(x) ∈ Medµ(K);
(iii) there exists another projection y of m = `(x) on ∂Kε with

cos

(
1

2
∠(p−m, q −m)

)
6

√
1 + µ2

2

A reformulation of Lemmas 4.3 and 4.2 is the following corollary:

Corollary 4.5. The image of Sεµ by the map ` covers the whole 2ε-away

µ-medial axis: `(Sεµ) = Medµ(K) ∩ (Rd \K2ε)

4.3. Lipschitz estimations for the map `. In this paragraph, we bound
the Lipschitz constants of the restriction of the maps ∇dK , τ and (finally)
` to the subset Sεµ ⊆ ∂Kε.

First, let ∂Kε,t be the set of points x in ∂Kε where the distance function is
differentiable, and such that τ(x) is bounded from below by t. In particular,
notice that Sεµ is contained in ∂Kε,ε. The following Lemma proves that the

functions Ψt and ∇xdK are Lipschitz on ∂Kε,t:

Lemma 4.6. (i) The restriction of Ψt to ∂Kε,t is (1 + t/ε)-Lipschitz.
(ii) The gradient of the distance function, x 7→ ∇xdK , is 3/ε-Lipschitz

on ∂Kε,ε.

Proof. (i) Let x and x′ be two points of ∂Kε with τ(x), τ(x′) > t, p and p′

their projections on K and y and y′ their image by Ψt. We let u = 1 + t/ε
be the scale factor between x− p and y − p, i.e.:

(∗) y′ − y = u(x′ − x) + (1− u)(p′ − p)
Using the fact that y projects to p, and the definition of u, we have:

‖y − p‖2 6
∥∥y − p′∥∥2

= ‖y − p‖2 +
∥∥p− p′∥∥2

+ 2〈y − p|p− p′〉

i.e.0 6
∥∥p− p′∥∥2

+ 2u〈x− p|p− p′〉

i.e.〈p− x|p− p′〉 6 1

2
u−1

∥∥p− p′∥∥2

Summing this last inequality, the same inequality with primes and the equal-
ity 〈p′ − p|p− p′〉 = −‖p′ − p‖2 gives

(∗∗) 〈x′ − x|p′ − p〉 >
(
1− u−1

) ∥∥p′ − p∥∥2

Using (∗) and (∗∗) we get the desired Lipschitz inequality∥∥y − y′∥∥2
= u2

∥∥x− x′∥∥2
+ (1− u)2

∥∥p′ − p∥∥2
+ 2u(1− u)〈x′ − x|p′ − p〉

6 u2
∥∥x− x′∥∥2 − (1− u)2

∥∥p′ − p∥∥2
6 (1 + t/ε)2

∥∥x− x′∥∥2
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(ii) If x belongs to ∂Kε,ε, then ∇xdK = 1
ε (Ψε(x) − x). The result follows

from the Lipschitz estimation of (i). �

The second step is to prove that the restriction of τ to the set Sεµ is
also Lipschitz. The technical core of the proof is contained in the following
geometric lemma:

Lemma 4.7. Let t(x, v) denote the intersection time of the ray x + tv with
the medial hyperplane Hx,y between x and another point y, and t(x′, v′) the
intersection time between the ray x′ + tv′ and Hx′y. Then, assuming:

α ‖x− y‖ 6 〈v|x− y〉, (4.6)∥∥x′ − y∥∥ 6 D, (4.7)∥∥v′ − v∥∥ 6 λ∥∥x′ − x∥∥ , (4.8)

ε 6 t(x, v) (4.9)

one obtains the following bound:

t(x′, v′) 6 t(x, v) +
6

α2
(1 + λD)

∥∥x′ − x∥∥
as soon as ‖x′ − x‖ is small enough (namely, smaller than εα2(1+3λD)−1).

Proof. We search the time t such that ‖x′ + tv′ − x′‖2 = ‖x′ + tv′ − y‖2, i.e.

t2
∥∥v′∥∥2

=
∥∥x′ − y∥∥2

+ 2t〈x′ − y|v′〉+ t2
∥∥v′∥∥2

Hence, the intersection time is t(x′, v′) = ‖x′ − y‖2 /2〈y − x′|v′〉. The lower
bound on t(x, y) translates as

ε 6
1

2

‖x− y‖2

〈x− y|v〉
6

1

2α
‖x− y‖

If ∇x′t and ∇v′t denote the gradients of this function in the direction of
v′ and x′, one has:

∇v′t(x′, v′) =
1

2

‖x′ − y‖2 (x′ − y)

〈y − x′|v′〉2

∇x′t(x′, v′) =
1

2

‖x′ − y‖2 v′ + 2〈y − x′|v′〉(x′ − y)

〈y − x′|v′〉2

Now, we bound the denominator of this expression:

〈x′ − y|v′〉 = 〈x′ − y|v′ − v〉+ 〈x′ − x|v〉+ 〈x− y|v〉
> α ‖x− y‖ − (1 + λ

∥∥x′ − y∥∥)
∥∥x′ − x∥∥

> α
∥∥x′ − y∥∥− (2 + λD)

∥∥x′ − x∥∥
The scalar product 〈x′ − y|v′〉 will be larger than (say) α

2 ‖x
′ − y‖ provided

that

(2 + λD)
∥∥x′ − x∥∥ 6 α

2

∥∥x′ − y∥∥
or, bounding from below ‖x′ − y‖ by ‖x− y‖ − ‖x− x′‖ > 2αε − ‖x− x′‖,
provided that:

(3 + λD)
∥∥x′ − x∥∥ 6 α2ε
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This is the case in particular if ‖x′ − x‖ 6 α2ε(3 + λD)−1. Under that
assumption, we have the following bound on the norm of the gradient, from
which the Lipschitz inequality follows:∥∥∇x′t(x′, v′)∥∥ 6 6/α2 and

∥∥∇v′t(x′, v′)∥∥ 6 4D/α2

�

Using this Lemma, we are able to show that the function ` is locally
Lipschitz on the subset Sεµ ⊆ ∂Kε:

Proposition 4.8. The restriction of τ to Sεµ is locally L-Lipschitz, in the
sense that if (x, y) ∈ Sεµ are such that ‖x− y‖ 6 δ0, then ‖`(x)− `(y)‖ 6
L ‖x− y‖ with

L = O

(
1 + diam(K)/ε

(1− µ)1/2

)
and δ0 = O(ε/L)

In order to simplify the proof of this Proposition, we will make use of the
following notation, where f is any function from X ⊆ Rd to R or Rd:

Lipδ f |X := sup{‖f(x)− f(y)‖ / ‖x− y‖ ; (x, y) ∈ X2 and ‖x− y‖ 6 δ}.

Proof. We start the proof by evaluating the Lipschitz constant of the restric-
tion of τ to Sεµ, using Lemma 4.7 (Step 1), and then deduce the Lipschitz
estimate for the function ` (Step 2).
Step 1. Thanks to Lemma 4.3, for any x in Sεµ, there exists another pro-
jection y of m = `(x) on ∂Kε such that the cosine of the angle θ =
1
2∠(x−m, y −m) is at most

√
(1 + µ2)/2. Let us denote by v = ∇xdK

the unit vector from x to m. The angle between −→xy and v is π/2− θ. Then,

cos(π/2− θ) = sin(θ) =
√

1− cos2(θ) > α :=

(
1− µ2

2

)1/2

As a consequence, with the α introduced above, one has α ‖x− y‖ 6
|〈v|x− y〉|. Moreover, ‖x− y‖ is smaller than D = diam(Kε) 6 diam(K) +
ε. For any other point x′ in Sεµ, and v′ = ∇x′dK , one has ‖v − v′‖ 6
λ ‖x− x′‖ with λ = 3/ε (thanks to Lemma 4.6).

These remarks allow us to apply Lemma 4.7. Using the notations of this
lemma, one sees that t(x, v) is simply τ(x) while t(x′, v′) is an upper bound
for τ(x′). This gives us:

τ(x′) 6 τ(x) +
6

α2
(1 + λD)

∥∥x− x′∥∥
6 τ(x) +M

∥∥x− x′∥∥
where M = O

(
1 + diam(K)/ε√

1− µ2

)
as soon as x′ is close enough to x. From the statement of Lemma 4.7, one
sees that ‖x− x′‖ 6 δ0 with δ0 = O(ε/M) is enough. Exchanging the role
of x and x′, one proves that |τ(x)− τ(x′)| 6 M ‖x− x′‖, provided that
‖x− x′‖ 6 δ0. As a conclusion,

Lipδ0

[
τ |Sεµ

]
= O

(
1 + diam(K)/ε√

1− µ2

)
(4.10)
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Step 2. We can use the following decomposition of the difference `(x)−`(x′):

`(x)−`(x′) = (x−x′)+(τ(x)−τ(x′))∇xdK +τ(x′)(∇xdK−∇x′dK) (4.11)

in order to bound the (local) Lipschitz constant of the restriction of ` to Sεµ
from those computed earlier. One deduces from this equation that

Lipδ0

[
`|Sεµ

]
6 1 + Lipδ0

[
τ |Sεµ

]
+ ‖τ‖∞ Lipδ0

[
∇dK |Sεµ

]
(4.12)

Thanks to Lemma 4.4, one has |τ(x)| = O(diam(K)/(1− µ)1/2); combining
this with the estimate from Lemma 4.6 that Lip ∇dK |Sεµ 6 3/ε, this gives

‖τ‖∞ Lipδ0

[
∇dK |Sεµ

]
= O(diam(K)/[ε(1− µ)1/2]) (4.13)

Putting the estimates (4.10) and (4.13) into (4.12) concludes the proof. �

In order to be able to deduce Theorem 4.1 from Proposition 4.8 we need
the following bound on the covering numbers of a levelset ∂Kr, where K is
any compact set in Rd (see [8, Proposition 4.2]):

N (∂Kr, ε) 6 N (∂K, r)N (Sd−1, ε/2r) (4.14)

Proof of Theorem 4.1. Applying Proposition 4.8, we get the existence of

L = Lipδ0

[
`|
S
ε/2
µ

]
= O(diam(K)/(ε

√
1− µ)) and δ0 = O(ε/L)

such that ` is locally L-Lipschitz. In particular, for any η smaller than δ0,

N
(

Medµ(K) ∩ (Rd \Kε), η
)

= N
(
`(Sε/2µ ), η

)
6 N

(
Sε/2µ , η/L

)
6 N (∂Kε/2, η/L).

(4.15)

The bound on the covering number of the boundary of tubular neighbor-
hoods (equation (4.14)) gives:

N (∂Kε/2, η/L) 6 N (∂K, ε/2)N
(
Sd−1,

η

Lε

)
. (4.16)

Equations (4.15) and (4.16), and the estimation N (Sd−1, ρ) ∼ ωd−1ρ
d−1

yield

N
(

Medµ(K) ∩ (Rd \Kε), η
)

= N (∂K, ε/2) O

([ η
Lε

]d−1
)
.

It suffices to replace L by its value from Proposition 4.8 to finish the proof.
�

5. A quantitative stability result for boundary measures

In this paragraph, we show how to use the bound on the covering numbers
of the ε-away µ-medial axis given in Theorem 4.1 in order to get a quanti-
tative version of the L1 convergence results for projections. Notice that the
meaning of locally in the next statement could also be made quantitative
using the same proof.
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Theorem 5.1. The map K 7→ pK ∈ L1(E) is locally h-Hölder for any
exponent h < 1

2(2d−1) .

Proof. As in the previous proof, we will let R = ‖dK‖E,∞, so that E is

contained in the tubular neighborhood KR. Remark first that if a point x
is such that dK(x) 6 1

2L − dH(K,K ′), then by definition of the Hausdorff

distance, dK′(x) 6 1
2L. In particular, the orthogonal projections of x on

K and K ′ are at distance at most L. Said otherwise, the set ∆L(K,K ′) is
contained in the complementary of the L

2 − δ tubular neighborhood of K,
with δ := dH(K,K ′). Using this fact and the result of Lemma 3.3, we have:

∆L(K,K ′) ∩KR ⊆ Medµ(K)2
√
Rδ ∩ (Rd \K

L
2
−δ) (5.17)

⊆
(

Medµ(K) ∩
(
Rd \K

L
2
−δ−2

√
Rδ
))2

√
Rδ

(5.18)

where µ =

(
1 +

[
L− δ

4R

]2
)−1/2

+ 4

√
δ

L
(5.19)

We now choose L to be δh, where h > 0, and see for which values of h we
are able to get a converging bound. For h < 1/2, the radius 1

2(L−δ)−2
√
Rδ

will be greater than L/3 as soon as as soon as δ is small enough. For these
values,

∆L(K,K ′) ∩KR ⊆
(

Medµ(K) ∩ (Rd \KL/3)
)2
√
Rδ

(5.20)

The µ above, given by Lemma 3.3 can then be bounded as follows. Note
that the constants in the “big O” will always be positive in the remaining
of the proof. From Eq. (5.19), one deduces:

µ = 1 + O(−δ2h + δ1/2−h/2)

This term will be asymptotically smaller than 1 provided that 2h < 1/2−h/2
i.e. h < 1/5, in which case µ = 1 − O(δ2h). By definition of the covering
number, one has:

Hd(∆L(K,K ′) ∩KR) 6 Hd
[(

Medµ(K) ∩
(
Rd \KL/3

))2
√
Rδ
]

6 N
(

Medµ(K) ∩
(
Rd \KL/3

)
, 2
√
Rδ
)
×O(δd/2)

(5.21)

The covering numbers of the intersection Medµ(K) ∩
(
Rd \KL/3

)
can be

bounded using Theorem 4.1:

N
(

Medµ(K) ∩
(
Rd \KL/2

)
, 2
√
Rδ
)

= N (∂K,L/4) O

[diam(K)/
√
Rδ√

1− µ2

]d−1


= N (∂K,L/4) O
(
δ−(h+ 1

2
)(d−1)

)
(5.22)
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Combining equations (5.21) and (5.22), and using the (crude) estimation
N (∂K,L/4) = O(1/Ld) = O(δ−hd),

Hd(∆L(K,K ′) ∩KR) 6 N (∂K,L/4) O(δ−h(d−1)− 1
2

(d−1)+ 1
2
d)

6 O
(
δ

1
2
−h(2d−1)

)
Hence, following the proof of Proposition 3.2,

‖pK′ − pK‖L1(E) 6 LH
d(E) +Hd(∆L(K,K ′) ∩ E) diam(K ∪K ′)

= O(δh + δ1/2−h(2d−1))

The second term converges to zero as δ = dH(K,K ′) does if h < 1
2(2d−1) .

This concludes the proof. �
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