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Concave maximization

Aurenhammer, Ho↵man, Aronov ’98

Theorem: ~ solves (FF) i↵ ~ = log(~) maximizes
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R
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i

) +  
i

] dµ(x)�
P

i

 
i

⌫
i

with c(x, y) = � log(1� hx|yi).
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2. Implementation



13

Implementation of Convex Programming (��)

Computation of descent direction / time step

LBFGS: low-storage version of the BFGS quasi-Newton scheme

I Quasi-Newton scheme:
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Computation of the generalized Voronoi cells
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i
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i
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kx� p
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k2 + !
j

}
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and construct oriented edges E between vertices.

3. Extract oriented cycles from G = (V ,E).

I in general, the cells C
i

:= Pow!
P

(p
i

) \ S2 can
be disconnected, have holes, etc.

I boundary representation: a family of oriented
cycles composed of circular arcs per cell.

I lower complexity bound: ⌦(N logN).

Complexity: O(N logN + C) where C = complexity of the Power diagram.

4. Handle circular arcs without vertex separately.
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3. Complexity of paraboloid intersection
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Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram

(PI
i

(~))
1iN

is O(N).

Complexity: E + F + V , where

E = # edges

V = # vertices

F = total # of connected components
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i

on {y
i

}? is convex

=) PI
i

(~) is connected.
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Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram

(PI
i

(~))
1iN

is O(N).

Proof:

I F  N

I Every vertex has 3 edges ) 3V  2E.
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Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram

(PI
i

(~))
1iN

is O(N).

Proof:

I F  N

I Every vertex has 3 edges ) 3V  2E.

I Euler’s formula V � E + F = 2 implies

V  2F � 4 and E  3F � 6.
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4. Other types of reflectors
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Other type : paraboloid union (PU)
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Other type : paraboloid union (PU)
y
1

y
2

y
3

Punctual light at origin o, µ measure on S2

o

Prescribed far-field: ⌫ =
P

i

⌫
i

�
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i
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i
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) = convex hull of paraboloid with focal o,
direction y

i

and focal distance 
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R(~) = @
�
[N
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i

(
i

)
�

PU
i

(~) = ⇡S2
o

(R(~) \ @P
i

(
i

))

Far-field reflector antenna problem:

PU

3

(~)

R(~) \ @P
3

(

3

)

Problem (FF’): Find 
1

, . . . ,

N

such that for every i, µ(PU

i

(~)) = ⌫

i

.
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Near-Field Reflector Antenna Problem
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Near-Field Reflector Antenna Problem
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Near-Field Reflector Antenna Problem
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Near-Field Reflector Antenna Problem

y
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Punctual light at origin o, µ measure on S2

o

Prescribed near-field: ⌫ =
P

i

⌫
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i

(e
i

)
�

EI
i

(~e) = ⇡S2
o

(R(~e) \ @E
i

(
i

))

Near-field reflector antenna problem:

Problem (NF): Find e
1

, . . . , e
N

such that for every i, µ(EI
i

(~e)) = ⌫
i

.

amount of light reflected to the point y

i

.

EI
1

(~e)

Oliker ’04
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Complexity of a single iteration

Combinatorial complexity Computational c.
Paraboloid intersection ⇥(n) ⇥(n log n)
Paraboloid union ⌦(n) O(n2)
Ellipsoid intersection ⇥(n2) ⇥(n2)
Ellipsoid union ⇥(n2) ⇥(n2)

# faces + points + edges

Complexity of union/intersection of solid

⌦(n

2

) for ellipsoids

confocal quadric of revolutions in R3:
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Conclusion

A simple quasi-Newton scheme can be used to solve rather large

(15k points) geometric instances of optimal transport.
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Conclusion

A simple quasi-Newton scheme can be used to solve rather large

(15k points) geometric instances of optimal transport.

Future work:

I quantitative stability results ?

I Near field reflector problem

Thank you!

Power diagrams can be used to compute e�ciently the c-Voronoi cells

I complexity of paraboloid union ?


