Reflector antenna problem

Boris Thibert
LJK Université de Grenoble

Joint work with Quentin Mérigot and Pedro Machado
Journées de Géométrie Algorithmique
December 16-20, 2013

Motivation

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}
- Snell's law

$$
T_{R}: x \in \mathcal{S}_{0}^{2} \mapsto y=x-2\langle x \mid n\rangle n
$$

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}
- Snell's law

$$
T_{R}: x \in \mathcal{S}_{0}^{2} \mapsto y=x-2\langle x \mid n\rangle n
$$

Brenier formulation $T_{\sharp} \mu=\nu$

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}
- Snell's law

$$
T_{R}: x \in \mathcal{S}_{0}^{2} \mapsto y=x-2\langle x \mid n\rangle n
$$

Brenier formulation $T_{\sharp} \mu=\nu$
i.e. for every borelian B

$$
\mu\left(T^{-1}(B)\right)=\nu(B)
$$

Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}
- Snell's law

$$
T_{R}: x \in \mathcal{S}_{0}^{2} \mapsto y=x-2\langle x \mid n\rangle n
$$

Brenier formulation $T_{\sharp \mu} \mu=\nu$ i.e. for every borelian B

$$
\mu\left(T^{-1}(B)\right)=\nu(B)
$$

Far-Field Reflector Antenna Problem

Brenier formulation $T_{\sharp} \mu=\nu$ i.e. for every borelian B

$$
\mu\left(T^{-1}(B)\right)=\nu(B)
$$

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: ν on \mathcal{S}_{∞}^{2}

Goal: Find a surface R which sends $\left(\mathcal{S}_{o}^{2}, \mu\right)$ to $\left(\mathcal{S}_{\infty}, \nu\right)$ under reflection by Snell's law.

- R is parameterized over \mathcal{S}_{o}^{2}
- Snell's law

$$
T_{R}: x \in \mathcal{S}_{0}^{2} \mapsto y=x-2\langle x \mid n\rangle n
$$

Monge-Ampere equation
If $\mu(x)=f(x) d x$ and $\nu(y)=g(y) d y$

$$
g(T(x)) \operatorname{det}(D T(x))=f(x)
$$

- highly non linear
- Existence
- Regularity, uniqueness Wang 96, Guan \& Wang 98

Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}

Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\nu_{1} \delta_{y_{1}}$ on \mathcal{S}_{∞}^{2}

Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\nu_{1} \delta_{y_{1}}$ on \mathcal{S}_{∞}^{2}
R : paraboloid of direction y_{1} and focal O

Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}

Reflector Problem : semi-discrete case

Reflector Problem: semi-discrete case

Decomposition of $\mathcal{S}_{o}^{2}: \mathrm{PI}_{i}(\vec{\kappa})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{\kappa}) \cap \partial P_{i}\left(\kappa_{i}\right)\right)$
$=$ directions that are reflected towards y_{i}.

Reflector Problem : semi-discrete case

Decomposition of $\mathcal{S}_{o}^{2}: \mathrm{PI}_{i}(\vec{\kappa})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{\kappa}) \cap \partial P_{i}\left(\kappa_{i}\right)\right)$
$=$ directions that are reflected towards y_{i}.

Problem (FF): Find $\kappa_{1}, \ldots, \kappa_{N}$ such that for every $i, \mu\left(\mathrm{PI}_{i}(\vec{\kappa})\right)=\nu_{i}$.

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$, $\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\}$.

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$, $\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\}$.

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

$$
\begin{aligned}
x \in \mathrm{PI}_{i}(\vec{\kappa}) & \Longleftrightarrow i \in \arg \min _{j} \frac{\kappa_{j}}{1-\left\langle x \mid y_{j}\right\rangle} \\
& \Longleftrightarrow i \in \arg \min _{j} \log \left(\kappa_{j}\right)-\log \left(1-\left\langle x \mid y_{j}\right\rangle\right) \\
& \Longleftrightarrow i \in \arg \min _{j} \psi_{j}+c\left(x, y_{j}\right)
\end{aligned}
$$

Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$, $\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\}$.

$$
x \in \mathrm{PI}_{i}(\vec{\kappa}) \Longleftrightarrow i \in \arg \min _{j} \frac{\kappa_{j}}{1-\left\langle x \mid y_{j}\right\rangle}
$$

$$
\Longleftrightarrow i \in \arg \min _{j} \log \left(\kappa_{j}\right)-\log \left(1-\left\langle x \mid y_{j}\right\rangle\right)
$$

$$
\Longleftrightarrow i \in \arg \min _{j} \psi_{j}+c\left(x, y_{j}\right)
$$

- An optimal transport problem

Semi-discrete optimal transport

$\mu=$ probability measure on X with density, $X=$ manifold

$\nu=$ prob. measure on finite Y
$=\sum_{y \in Y} \nu_{y} \delta_{y}$

0

Semi-discrete optimal transport

$\mu=$ probability measure on X with density, $X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.
in short: $T_{\#} \mu=\nu$.

$$
\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}
$$

$\nu=$ prob. measure on finite Y
$=\sum_{y \in Y} \nu_{y} \delta_{y}$

0
o

○
0

都

Semi-discrete optimal transport

$\mu=$ probability measure on X with density, $X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.

$$
\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}
$$

$\nu=$ prob. measure on finite Y

$$
=\sum_{y \in Y} \nu_{y} \delta_{y}
$$

$$
\begin{gathered}
\square \\
\circ \\
0 \\
\\
0
\end{gathered}
$$

Cost function: $c: X \times Y \rightarrow \mathbb{R}$

$$
\mathcal{C}_{c}(T)=\int_{X} c(x, T(x)) \mathrm{d} \mu(x)
$$

in short: $T_{\#} \mu=\nu$.

Semi-discrete optimal transport

$\mu=$ probability measure on X with density, $X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.

$$
\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}
$$

in short: $T_{\#} \mu=\nu$.
$\nu=$ prob. measure on finite Y

$$
=\sum_{y \in Y} \nu_{y} \delta_{y}
$$

\rightarrow

Cost function: $c: X \times Y \rightarrow \mathbb{R}$

$$
\begin{aligned}
\mathcal{C}_{c}(T) & =\int_{X} c(x, T(x)) \mathrm{d} \mu(x) \\
& =\sum_{y} \int_{T^{-1}(y)} c(x, y) \mathrm{d} \mu(x)
\end{aligned}
$$

Semi-discrete optimal transport

$\mu=$ probability measure on X with density, $X=$ manifold

Transport map: $T: X \rightarrow Y$ s.t.

$$
\forall y \in Y, \mu\left(T^{-1}(\{y\})\right)=\nu_{y}
$$

in short: $T_{\#} \mu=\nu$.
$\nu=$ prob. measure on finite Y

$$
=\sum_{y \in Y} \nu_{y} \delta_{y}
$$

o

Cost function: $c: X \times Y \rightarrow \mathbb{R}$

$$
\begin{aligned}
\mathcal{C}_{c}(T) & =\int_{X} c(x, T(x)) \mathrm{d} \mu(x) \\
& =\sum_{y} \int_{T^{-1}(y)} c(x, y) \mathrm{d} \mu(x)
\end{aligned}
$$

Mange problem: $\mathcal{T}_{c}(\mu, \nu):=\min \left\{\mathcal{C}_{c}(T) ; T_{\#} \mu=\nu\right\}$

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010
-
\circ

$$
o^{y}
$$

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

0	0
0	0
Y finite set, $\psi: Y \rightarrow \mathbb{R}$	

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)
$$

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
\begin{aligned}
& T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y) \\
& \operatorname{Vor}_{c}^{\psi}(y)=\left\{x \in \mathbb{R}^{d} ; T_{c}^{\psi}(x)=y\right\}
\end{aligned}
$$

$=$ generalized weighted Voronoi cell

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
\begin{aligned}
& T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y) \\
& \operatorname{Vor}_{c}^{\psi}(y)=\left\{x \in \mathbb{R}^{d} ; T_{c}^{\psi}(x)=y\right\}
\end{aligned}
$$

$=$ generalized weighted Voronoi cell

NB: Under (Twist), $\left(\operatorname{Vor}_{c}^{\psi}(y)\right)_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
\begin{aligned}
& T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y) \\
& \operatorname{Vor}_{c}^{\psi}(y)=\left\{x \in \mathbb{R}^{d} ; T_{c}^{\psi}(x)=y\right\}
\end{aligned}
$$

$=$ generalized weighted Voronoi cell

NB: Under (Twist), $\left(\operatorname{Vor}_{c}^{\psi}(y)\right)_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \rightarrow \mathbb{R}$, the map T_{c}^{ψ} is a c-optimal transport between μ and $T_{c \#}^{\psi} \mu$.

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
\begin{aligned}
& T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y) \\
& \operatorname{Vor}_{c}^{\psi}(y)=\left\{x \in \mathbb{R}^{d} ; T_{c}^{\psi}(x)=y\right\}
\end{aligned}
$$

$=$ generalized weighted Voronoi cell

NB: Under (Twist), $\left(\operatorname{Vor}_{c}^{\psi}(y)\right)_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \rightarrow \mathbb{R}$, the map T_{c}^{ψ} is a c-optimal transport between μ and $T_{c \#}^{\psi} \mu$.

- Note: $T_{c \#}^{\psi} \mu=\sum_{y \in Y} \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \delta_{y}$.

Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi: Y \rightarrow \mathbb{R}$

We assume (Twist), i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_{x} c(x, y)$ is injective.

$$
\begin{aligned}
& T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y) \\
& \operatorname{Vor}_{c}^{\psi}(y)=\left\{x \in \mathbb{R}^{d} ; T_{c}^{\psi}(x)=y\right\}
\end{aligned}
$$

$=$ generalized weighted Voronoi cell

NB: Under (Twist), $\left(\operatorname{Vor}_{c}^{\psi}(y)\right)_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \rightarrow \mathbb{R}$, the map T_{c}^{ψ} is a c-optimal transport between μ and $T_{c \#}^{\psi} \mu$.

- Note: $T_{c \#}^{\psi} \mu=\sum_{y \in Y} \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \delta_{y}$.
- Converse ?

Back to the Reflector Antenna Problem

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Back to the Reflector Antenna Problem

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Optimal transport formulation

- $\mathrm{PI}_{i}(\vec{\kappa})=\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)$.
- $T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)$

Back to the Reflector Antenna Problem

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Optimal transport formulation

- $\mathrm{PI}_{i}(\vec{\kappa})=\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)$.
- $T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)$

The map T_{c}^{ψ} is a c-optimal transport between μ and $T_{c \#}^{\psi} \mu$.

Back to the Reflector Antenna Problem

Lemma: With $c(x, y)=-\log (1-\langle x \mid y\rangle)$, and $\psi_{i}:=\log \left(\kappa_{i}\right)$,

$$
\mathrm{PI}_{i}(\vec{\kappa})=\left\{x \in \mathcal{S}_{0}^{2}, c\left(x, y_{i}\right)+\psi_{i} \leq c\left(x, y_{j}\right)+\psi_{j} \quad \forall j\right\} .
$$

Optimal transport formulation

- $\mathrm{PI}_{i}(\vec{\kappa})=\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)$.
- $T_{c}^{\psi}(x)=\arg \min _{y \in Y} c(x, y)+\psi(y)$

The map T_{c}^{ψ} is a c-optimal transport between μ and $T_{c \#}^{\psi} \mu$.
Problem (FF): Find $\psi_{1}, \ldots, \psi_{N}$ such that $T_{c \#}^{\psi} \mu=\nu$.

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Initialization: Fix $y_{0} \in Y$, let $\delta=\varepsilon / N$ and compute ψ s.t.

$$
\forall y \in Y \backslash\left\{y_{0}\right\}, \quad \mu\left(\operatorname{Vor}_{c}^{\psi}(p)\right) \leq \nu_{y}+\delta
$$

While $\exists y \neq y_{0}$ such that $\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \leq \nu_{y}-\delta$, do:

$$
\text { decrease } \psi(y) \text { s.t. } \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \in\left[\nu_{y}, \nu_{y}+\delta\right] \text {, }
$$

Result: ψ s.t. for all $y,\left|\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right)-\nu_{y}\right| \leq \varepsilon$.

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Initialization: Fix $y_{0} \in Y$, let $\delta=\varepsilon / N$ and compute ψ s.t.

$$
\forall y \in Y \backslash\left\{y_{0}\right\}, \quad \mu\left(\operatorname{Vor}_{c}^{\psi}(p)\right) \leq \nu_{y}+\delta
$$

While $\exists y \neq y_{0}$ such that $\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \leq \nu_{y}-\delta$, do:

$$
\text { decrease } \psi(y) \text { s.t. } \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \in\left[\nu_{y}, \nu_{y}+\delta\right] \text {, }
$$

Result: ψ s.t. for all $y,\left|\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right)-\nu_{y}\right| \leq \varepsilon$.

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Initialization: Fix $y_{0} \in Y$, let $\delta=\varepsilon / N$ and compute ψ s.t.

$$
\forall y \in Y \backslash\left\{y_{0}\right\}, \quad \mu\left(\operatorname{Vor}_{c}^{\psi}(p)\right) \leq \nu_{y}+\delta
$$

While $\exists y \neq y_{0}$ such that $\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \leq \nu_{y}-\delta$, do:

$$
\text { decrease } \psi(y) \text { s.t. } \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \in\left[\nu_{y}, \nu_{y}+\delta\right] \text {, }
$$

Result: ψ s.t. for all $y,\left|\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right)-\nu_{y}\right| \leq \varepsilon$.

- Complexity of SP: N^{2} / ε steps

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Initialization: Fix $y_{0} \in Y$, let $\delta=\varepsilon / N$ and compute ψ s.t.

$$
\forall y \in Y \backslash\left\{y_{0}\right\}, \quad \mu\left(\operatorname{Vor}_{c}^{\psi}(p)\right) \leq \nu_{y}+\delta
$$

While $\exists y \neq y_{0}$ such that $\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \leq \nu_{y}-\delta$, do:

$$
\text { decrease } \psi(y) \text { s.t. } \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \in\left[\nu_{y}, \nu_{y}+\delta\right] \text {, }
$$

Result: ψ s.t. for all $y,\left|\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right)-\nu_{y}\right| \leq \varepsilon$.

- Complexity of SP: N^{2} / ε steps
- Generalization of Oliker-Prussner in \mathbb{R}^{2} with $c(x, y)=\|x-y\|^{2}$

Supporting paraboloids algorithm' 99

Cafarelli-Kochengin-Oliker'99: coordinate-wise ascent, with minimum increment

Initialization: Fix $y_{0} \in Y$, let $\delta=\varepsilon / N$ and compute ψ s.t.

$$
\forall y \in Y \backslash\left\{y_{0}\right\}, \quad \mu\left(\operatorname{Vor}_{c}^{\psi}(p)\right) \leq \nu_{y}+\delta
$$

While $\exists y \neq y_{0}$ such that $\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \leq \nu_{y}-\delta$, do:

$$
\text { decrease } \psi(y) \text { s.t. } \mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right) \in\left[\nu_{y}, \nu_{y}+\delta\right] \text {, }
$$

Result: ψ s.t. for all $y,\left|\mu\left(\operatorname{Vor}_{c}^{\psi}(y)\right)-\nu_{y}\right| \leq \varepsilon$.

- Complexity of SP: N^{2} / ε steps
- Generalization of Oliker-Prussner in \mathbb{R}^{2} with $c(x, y)=\|x-y\|^{2}$
- Generalization: MTW ${ }^{+}$costs kitagawa '12

Concave maximization

Theorem: $\vec{\kappa}$ solves (FF) iff $\vec{\psi}=\log (\vec{\kappa})$ maximizes

$$
\Phi(\psi):=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
$$

with $c(x, y)=-\log (1-\langle x \mid y\rangle)$.

Concave maximization

Theorem: $\vec{\kappa}$ solves (FF) iff $\vec{\psi}=\log (\vec{\kappa})$ maximizes

$$
\Phi(\psi):=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
$$

with $c(x, y)=-\log (1-\langle x \mid y\rangle)$.
Aurenhammer, Hoffman, Aronov '98

- A consequence of Kantorovich duality.

Proof of concave maximization thm

Supdifferentials. Let $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\psi \in \mathbb{R}^{d}$.

- $\partial^{+} \Phi(\psi)=\left\{v \in \mathbb{R}^{d}, \quad \Phi(\varphi) \leq \Phi(\psi)+\langle\varphi-\psi \mid v\rangle \quad \forall \varphi \in \mathbb{R}^{d}\right\}$.

Proof of concave maximization thm

Supdifferentials. Let $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\psi \in \mathbb{R}^{d}$.

- $\partial^{+} \Phi(\psi)=\left\{v \in \mathbb{R}^{d}, \quad \Phi(\varphi) \leq \Phi(\psi)+\langle\varphi-\psi \mid v\rangle \quad \forall \varphi \in \mathbb{R}^{d}\right\}$.
- Φ concave $\Leftrightarrow \forall \psi \in \mathbb{R}^{d} \partial^{+} \Phi(\psi) \neq \emptyset$.
- In this case : $\partial^{+} \Phi(\psi)=\{\nabla \Phi(\psi)\}$ a.e.
- ψ maximum of $\Phi \Leftrightarrow 0 \in \partial^{+} \Phi(\psi)$

Proof of concave maximization thm

$$
\Phi(\psi):=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
$$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

For all $\varphi \in \mathbb{R}^{d}$
$\min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\varphi_{i}\right] \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\varphi_{T_{\psi}(x)}\right]$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

For all $\varphi \in \mathbb{R}^{d}$
$\min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\varphi_{i}\right] \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\varphi_{T_{\psi}(x)}\right]$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

For all $\varphi \in \mathbb{R}^{d}$

$$
\begin{aligned}
\min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\varphi_{i}\right] & \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\varphi_{T_{\psi}(x)}\right] \\
& \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\psi_{T_{\psi}(x)}\right]+\varphi_{T_{\psi}(x)}-\psi_{T_{\psi}(x)}
\end{aligned}
$$

Proof of concave maximization the

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

For all $\varphi \in \mathbb{R}^{d}$

$$
T_{\psi}(x)=i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)
$$

$$
\min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\varphi_{i}\right] \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\varphi_{T_{\psi}(x)}\right]
$$

$$
\int_{\mathcal{S}^{d-1}}
$$

$$
\Phi(\varphi)+\sum_{i} \varphi_{i} \nu_{i} \leq\left[c\left(x, y_{T_{\psi}(x)}\right)+\psi_{T_{\psi}(x)} \Phi+\varphi_{T_{\psi}(x)}-\psi_{T_{\psi}(x)}\right.
$$

Proof of concave maximization thm

$$
\begin{aligned}
& \Phi(\psi):=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
&=\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& T_{\psi}(x)=i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right) \\
& \Phi(\varphi)-\Phi(\psi) \leq \int_{\mathcal{S}^{d-1}} \varphi_{T_{\psi}(x)}-\psi_{T_{\psi}(x)} \mathrm{d} \mu(x)-\sum_{i}\left(\varphi_{i}-\psi_{i}\right) \nu_{i}
\end{aligned}
$$

Proof of concave maximization thm

$$
\begin{aligned}
& \Phi(\psi):=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& \qquad \begin{array}{c}
T_{\psi}(x)=i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right) \\
\Phi(\varphi)-\Phi(\psi) \leq \\
\leq \int_{\mathcal{S}^{d-1}} \varphi_{T_{\psi}(x)}-\psi_{T_{\psi}(x)} \mathrm{d} \mu(x)-\sum_{i}\left(\varphi_{i}-\psi_{i}\right) \nu_{i} \\
\\
\quad=\langle D \Phi(\psi) \mid \varphi-\psi\rangle \quad \text { with } D \Phi(\psi)=\left(\mu\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)-\nu_{i}\right)
\end{array}
\end{aligned}
$$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

$$
T_{\psi}(x)=i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)
$$

$\Phi(\varphi) \leq \Phi(\psi)+\langle D \Phi(\psi) \mid \varphi-\psi\rangle$
with $D \Phi(\psi)=\left(\mu\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)-\nu_{i}\right)$

Proof of concave maximization thm

$$
\begin{aligned}
\Phi(\psi) & :=\sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i} \\
& =\int_{\mathcal{S}^{d-1}} \min _{1 \leq i \leq N}\left[c\left(x, y_{i}\right)+\psi_{i}\right] \mathrm{d} \mu(x)-\sum_{i} \psi_{i} \nu_{i}
\end{aligned}
$$

$$
T_{\psi}(x)=i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)
$$

$\Phi(\varphi) \leq \Phi(\psi)+\langle D \Phi(\psi) \mid \varphi-\psi\rangle$
with $D \Phi(\psi)=\left(\mu\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)-\nu_{i}\right)$

- $D \Phi(\psi) \in \partial^{+} \Phi(\psi) \Rightarrow \Phi$ concave.
- $D \Phi(\psi)$ depends continuously on $\psi \Rightarrow \Phi$ of class C^{1}.
- ψ maximum of $\Phi \Leftrightarrow \mu\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)=\nu_{i} \forall i$

2. Implementation

Implementation of Convex Programming ($-\Phi$)

- Quasi-Newton scheme:

Computation of descent direction / time step
LBFGS: low-storage version of the BFGS quasi-Newton scheme

Implementation of Convex Programming ($-\Phi$)

- Quasi-Newton scheme:

Computation of descent direction / time step
LBFGS: low-storage version of the BFGS quasi-Newton scheme

- Evaluation of Φ and $\nabla \Phi$:

$$
\begin{array}{r}
\int_{\operatorname{Vor}_{c}^{\psi}(p)} \mathrm{d} \mu(x) \\
\int_{\operatorname{Vor}_{c}^{\psi}(y)} c(x, y) \mathrm{d} \mu(x)
\end{array}
$$

Main difficulty: computation of $\operatorname{Vor}_{c}^{\psi}(y)$

Implementation of Convex Programming ($-\Phi$)

- Quasi-Newton scheme:

Computation of descent direction / time step
LBFGS: low-storage version of the BFGS quasi-Newton scheme

- Evaluation of Φ and $\nabla \Phi$:

$$
\begin{array}{r}
\int_{\operatorname{Vor}_{C}^{\psi}(p)} \mathrm{d} \mu(x) \\
\int_{\operatorname{Vor}_{c}^{\psi}(y)} c(x, y) \mathrm{d} \mu(x)
\end{array}
$$

Main difficulty: computation of $\operatorname{Vor}_{c}^{\psi}(y)$

Computation of the generalized Voronoi cells

Definition: Given $P=\left\{p_{i}\right\}_{1 \leq i \leq N} \subseteq \mathbb{R}^{d}$ and $\left(\omega_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$

$$
\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right):=\left\{x \in \mathbb{R}^{d} ; i=\arg \min _{j}\left\|x-p_{j}\right\|^{2}+\omega_{j}\right\}
$$

Computation of the generalized Voronoi cells

Definition: Given $P=\left\{p_{i}\right\}_{1 \leq i \leq N} \subseteq \mathbb{R}^{d}$ and $\left(\omega_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$

$$
\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right):=\left\{x \in \mathbb{R}^{d} ; i=\arg \min _{j}\left\|x-p_{j}\right\|^{2}+\omega_{j}\right\}
$$

- Efficient computation of $\left(\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)\right)_{i}$ using CGAL $(d=2,3)$

Computation of the generalized Voronoi cells

Definition: Given $P=\left\{p_{i}\right\}_{1 \leq i \leq N} \subseteq \mathbb{R}^{d}$ and $\left(\omega_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$

$$
\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right):=\left\{x \in \mathbb{R}^{d} ; i=\arg \min _{j}\left\|x-p_{j}\right\|^{2}+\omega_{j}\right\}
$$

- Efficient computation of $\left(\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)\right)_{i}$ using CGAL $(d=2,3)$

Lemma: With $\vec{\psi}=\log (\vec{\kappa}), p_{i}:=-\frac{y_{j}}{2 \kappa_{j}}$ and $\omega_{i}:=-\left\|\frac{y_{j}}{2 \kappa_{j}}\right\|^{2}-\frac{1}{\kappa_{j}}$,

$$
\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}
$$

Computation of the generalized Voronoi cells

Definition: Given $P=\left\{p_{i}\right\}_{1 \leq i \leq N} \subseteq \mathbb{R}^{d}$ and $\left(\omega_{i}\right)_{1 \leq i \leq N} \in \mathbb{R}^{N}$

$$
\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right):=\left\{x \in \mathbb{R}^{d} ; i=\arg \min _{j}\left\|x-p_{j}\right\|^{2}+\omega_{j}\right\}
$$

- Efficient computation of $\left(\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)\right)_{i}$ using CGAL $(d=2,3)$

Lemma: With $\vec{\psi}=\log (\vec{\kappa}), p_{i}:=-\frac{y_{j}}{2 \kappa_{j}}$ and $\omega_{i}:=-\left\|\frac{y_{j}}{2 \kappa_{j}}\right\|^{2}-\frac{1}{\kappa_{j}}$,

$$
\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}
$$

Proof: $x \in \operatorname{Vor}_{c}^{\psi}\left(y_{i}\right) \subseteq \mathcal{S}_{o}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow i \in \arg \min _{j} \frac{\kappa_{j}}{1-\left\langle x \mid y_{j}\right\rangle} \\
& \Longleftrightarrow i \in \arg \min _{j}\left\langle x \left\lvert\, \frac{y_{j}}{\kappa_{j}}\right.\right\rangle-\frac{1}{\kappa_{j}} \\
& \Longleftrightarrow i \in \arg \min _{j} \| x+\frac{\left.\frac{y_{j}}{\frac{2 \kappa_{j}}{}}\right|^{2}}{-p_{j}} \frac{-\left\|\frac{y_{j}}{2 \kappa_{j}}\right\|^{2}-\frac{1}{\kappa_{j}}}{\omega_{j}} \\
& \Longleftrightarrow x \in \operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}
\end{aligned}
$$

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

1. Compute implicitely the intersection between every edge of $\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)$ and \mathcal{S}^{2}. Set vertices $V:=\{\bullet\}$

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

1. Compute implicitely the intersection between every edge of $\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)$ and \mathcal{S}^{2}. Set vertices $V:=\{\bullet\}$.
2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

1. Compute implicitely the intersection between every edge of $\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)$ and \mathcal{S}^{2}. Set vertices $V:=\{\bullet\}$
2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices.
3. Extract oriented cycles from $G=(V, E)$.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

1. Compute implicitely the intersection between every edge of $\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)$ and \mathcal{S}^{2}. Set vertices $V:=\{\bullet\}$
2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices.
3. Extract oriented cycles from $G=(V, E)$.
4. Handle circular arcs without vertex separately.

Computation of the generalized Voronoi cells

- in general, the cells $C_{i}:=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_{i}=\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right) \cap \mathcal{S}^{2}$

1. Compute implicitely the intersection between every edge of $\operatorname{Pow}_{P}^{\omega}\left(p_{i}\right)$ and \mathcal{S}^{2}. Set vertices $V:=\{\bullet\}$
2. Scan the edges of every 2 -facet in clockwise order and construct oriented edges E between vertices.
3. Extract oriented cycles from $G=(V, E)$.
4. Handle circular arcs without vertex separately.

Complexity: $\mathrm{O}(N \log N+C)$ where $C=$ complexity of the Power diagram.

Numerical results (1)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

$$
\text { drawing of }\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)\left(\text { on } \mathcal{S}_{+}^{2}\right) \text { for } \psi=0
$$

Numerical results (1)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge. $\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

drawing of $\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)$ (on \mathcal{S}_{+}^{2}) for $\psi_{\text {sol }}$

Numerical results (1)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=1000$

rendering of the image reflected at infinity (using LuxRender)

Numerical results (2)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=15000$

drawing of $\left(\operatorname{Vor}_{c}^{\psi}\left(y_{i}\right)\right)\left(\right.$ on $\left.\mathcal{S}_{+}^{2}\right)$ for $\psi_{\text {sol }}$

Numerical results (2)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere \mathcal{S}_{+}^{2}
$N=15000$

Numerical results (2)

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ obtained by discretizing a picture of G. Monge.
$\mu=$ uniform measure on half-sphere $\mathcal{S}_{+}^{2} \quad N=15000$

rendering of the image reflected at infinity (using LuxRender)

3. Complexity of paraboloid intersection

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Complexity: $E+F+V$, where

$$
\begin{aligned}
& E=\# \text { edges } \\
& V=\# \text { vertices } \\
& F=\text { total \# of connected components }
\end{aligned}
$$

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$

Lemma: The projection of $\partial P_{i} \cap$ P_{j} onto the plane $\left\{y_{i}^{\perp}\right\}$ is a disc.

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$

Lemma: The projection of $\partial P_{i} \cap$ P_{j} onto the plane $\left\{y_{i}^{\perp}\right\}$ is a disc.

\Longrightarrow the projection of $R(\vec{\kappa}) \cap \partial P_{i}$ on $\left\{y_{i}\right\}^{\perp}$ is convex

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$

Lemma: The projection of $\partial P_{i} \cap$ P_{j} onto the plane $\left\{y_{i}^{\perp}\right\}$ is a disc.

\Longrightarrow the projection of $R(\vec{\kappa}) \cap \partial P_{i}$ on $\left\{y_{i}\right\}^{\perp}$ is convex
$\Longrightarrow \mathrm{PI}_{i}(\vec{\kappa})$ is connected.

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$
- Every vertex has 3 edges $\Rightarrow 3 V \leq 2 E$.

Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $\left(\mathrm{PI}_{i}(\vec{\kappa})\right)_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$
- Every vertex has 3 edges $\Rightarrow 3 V \leq 2 E$.
- Euler's formula $V-E+F=2$ implies

$$
V \leq 2 F-4 \text { and } E \leq 3 F-6 .
$$

4. Other types of reflectors

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}
$P_{i}\left(\kappa_{i}\right)=$ convex hull of paraboloid with focal o, direction y_{i} and focal distance κ_{i}

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}
$P_{i}\left(\kappa_{i}\right)=$ convex hull of paraboloid with focal o, direction y_{i} and focal distance κ_{i}

$$
R(\vec{\kappa})=\partial\left(\cup_{i=1}^{N} P_{i}\left(\kappa_{i}\right)\right)
$$

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}
$P_{i}\left(\kappa_{i}\right)=$ convex hull of paraboloid with focal o, direction y_{i} and focal distance κ_{i}

$$
R(\vec{\kappa})=\partial\left(\cup_{i=1}^{N} P_{i}\left(\kappa_{i}\right)\right)
$$

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2} Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}
$P_{i}\left(\kappa_{i}\right)=$ convex hull of paraboloid with focal o, direction y_{i} and focal distance κ_{i}

$$
\begin{aligned}
& R(\vec{\kappa})=\partial\left(\cup_{i=1}^{N} P_{i}\left(\kappa_{i}\right)\right) \\
& \operatorname{PU}_{i}(\vec{\kappa})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{\kappa}) \cap \partial P_{i}\left(\kappa_{i}\right)\right)
\end{aligned}
$$

Other type : paraboloid union (PU)

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed far-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathcal{S}_{∞}^{2}
$P_{i}\left(\kappa_{i}\right)=$ convex hull of paraboloid with focal o, direction y_{i} and focal distance κ_{i}

$$
\begin{aligned}
& R(\vec{\kappa})=\partial\left(\cup_{i=1}^{N} P_{i}\left(\kappa_{i}\right)\right) \\
& \operatorname{PU}_{i}(\vec{\kappa})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{\kappa}) \cap \partial P_{i}\left(\kappa_{i}\right)\right)
\end{aligned}
$$

Far-field reflector antenna problem:
Problem (FF'): Find $\kappa_{1}, \ldots, \kappa_{N}$ such that for every $i, \mu\left(\mathrm{PU}_{i}(\vec{\kappa})\right)=\nu_{i}$.

Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed near-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathbb{R}^{3}

- y_{2}

Near-Field Reflector Antenna Problem

Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed near-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathbb{R}^{3}
$E_{i}\left(e_{i}\right)=$ convex hull of ellipsoid with focals o and y_{i}, and eccentricity e_{i}

Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed near-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathbb{R}^{3}
$E_{i}\left(e_{i}\right)=$ convex hull of ellipsoid with focals o and y_{i}, and eccentricity e_{i}

$$
R(\vec{e})=\partial\left(\cap_{i=1}^{N} E_{i}\left(e_{i}\right)\right)
$$

Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed near-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathbb{R}^{3}
$E_{i}\left(e_{i}\right)=$ convex hull of ellipsoid with focals o and y_{i}, and eccentricity e_{i}

$$
\begin{aligned}
& R(\vec{e})=\partial\left(\cap_{i=1}^{N} E_{i}\left(e_{i}\right)\right) \\
& \operatorname{EI}_{i}(\vec{e})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{e}) \cap \partial E_{i}\left(\kappa_{i}\right)\right)
\end{aligned}
$$

Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on \mathcal{S}_{o}^{2}
Prescribed near-field: $\nu=\sum_{i} \nu_{i} \delta_{y_{i}}$ on \mathbb{R}^{3}
$E_{i}\left(e_{i}\right)=$ convex hull of ellipsoid with focals o and y_{i}, and eccentricity e_{i}

$$
\begin{aligned}
& R(\vec{e})=\partial\left(\cap_{i=1}^{N} E_{i}\left(e_{i}\right)\right) \\
& \operatorname{EI}_{i}(\vec{e})=\pi_{\mathcal{S}_{o}^{2}}\left(R(\vec{e}) \cap \partial E_{i}\left(\kappa_{i}\right)\right)
\end{aligned}
$$

Near-field reflector antenna problem:
Problem (NF): Find e_{1}, \ldots, e_{N} such that for every $i, \mu\left(\mathrm{EI}_{i}(\vec{e})\right)=\nu_{i}$.

Complexity of a single iteration

Complexity of union/intersection of solid confocal quadric of revolutions in \mathbb{R}^{3} :

O

Paraboloid intersection
Paraboloid union
Ellipsoid intersection Ellipsoid union

Combinatorial complexity
$\Theta(n)$
$\Omega(n)$
$\Theta\left(n^{2}\right)$
$\Theta\left(n^{2}\right)$
\uparrow
\# faces + points + edges

Computational c.

$$
\begin{gathered}
\Theta(n \log n) \\
\mathrm{O}\left(n^{2}\right) \\
\Theta\left(n^{2}\right) \\
\Theta\left(n^{2}\right)
\end{gathered}
$$

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Future work:

- Near field reflector problem
- complexity of paraboloid union ?
- quantitative stability results ?

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Future work:

- Near field reflector problem
- complexity of paraboloid union ?
- quantitative stability results ?

