Reflector antenna problem

Boris Thibert
LJK Université de Grenoble

Joint work with Quentin Mérigot and Pedro Machado
Journées de Géométrie Algorithmique
December 16-20, 2013
Motivation
Motivation
Motivation

Pb : find the reflector surface
Far-Field Reflector Antenna Problem

Punctual light at origin \(o \), \(\mu \) measure on \(S^2_o \)
Prescribed far-field: \(\nu \) on \(S^2_\infty \)
Punctual light at origin \(o \), \(\mu \) measure on \(S^2_o \)

Prescribed far-field: \(\nu \) on \(S^\infty \)

Goal: Find a surface \(R \) which sends \((S^2_o, \mu)\) to \((S^\infty, \nu)\) under reflection by Snell’s law.
Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2
Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell’s law.

R is parameterized over S_o^2
Far-Field Reflector Antenna Problem

Punctual light at origin \(o \), \(\mu \) measure on \(S^2_o \)
Prescribed far-field: \(\nu \) on \(S^2_\infty \)

Goal: Find a surface \(R \) which sends \((S^2_o, \mu)\) to \((S_\infty, \nu)\) under reflection by Snell’s law.

- \(R \) is parameterized over \(S^2_o \)
- Snell’s law
 \[
 T_R : x \in S^2_o \mapsto y = x - 2\langle x|n\rangle n
 \]
Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2
Prescribed far-field: ν on S_{∞}^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_{∞}, ν) under reflection by Snell’s law.

- R is parameterized over S_o^2
- Snell’s law
 \[T_R : x \in S_o^2 \mapsto y = x - 2\langle x|n\rangle n \]

Brenier formulation $T_\# \mu = \nu$
Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2
Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_0^2, μ) to (S_∞^2, ν) under reflection by Snell’s law.

- R is parameterized over S_o^2
- Snell’s law
 \[T_R : x \in S_0^2 \mapsto y = x - 2\langle x | n \rangle n \]

Brenier formulation
\[T_\# \mu = \nu \]
i.e. for every borelian B
\[\mu(T^{-1}(B)) = \nu(B) \]
Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2
Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell’s law.

- R is parameterized over S_o^2
- Snell’s law
 $$T_R : x \in S_o^2 \mapsto y = x - 2\langle x | n \rangle n$$

Brenier formulation
$$T_#\mu = \nu$$
i.e. for every borelian B
$$\mu(T^{-1}(B)) = \nu(B)$$

Monge-Ampere equation
If $\mu(x) = f(x)dx$ and $\nu(y) = g(y)dy$
$$g(T(x)) \det(DT(x)) = f(x)$$
- highly non linear
Far-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S^2_o
Prescribed far-field: ν on S^2_∞

Goal: Find a surface R which sends (S^2_o, μ) to (S^∞, ν) under reflection by Snell’s law.

- R is parameterized over S^2_o
- Snell’s law
 \[T_R : x \in S^2_0 \mapsto y = x - 2\langle x|n\rangle n \]

Brenier formulation
\[T_\# \mu = \nu \]
\[\mu(T^{-1}(B)) = \nu(B) \]

Monge-Ampere equation
If $\mu(x) = f(x)dx$ and $\nu(y) = g(y)dy$
\[g(T(x)) \det(DT(x)) = f(x) \]
- highly non linear

Existence
Caffarelli & Oliker 94

Regularity, uniqueness
Wang 96, Guan & Wang 98
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S^2_o
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S_o^2

Prescribed far-field: $\nu = \nu_1 \delta_{y_1}$ on S_∞^2
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S^2_o
Prescribed far-field: $\nu = \nu_1 \delta_{y_1}$ on S^2_∞

R: paraboloid of direction y_1 and focal O
Reflector Problem : semi-discrete case

Punctual light at origin o, μ measure on S^2_o

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S_o^2

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞

$P_i(\kappa_i) =$ solid paraboloid of revolution with focal o, direction y_i and focal distance κ_i

$R(\kappa) = \partial \left(\bigcap_{i=1}^N P_i(\kappa_i) \right)$
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S^2_o

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞

$P_i(\kappa_i) = \text{solid paraboloid of revolution with focal } o,$
$\text{direction } y_i \text{ and focal distance } \kappa_i$

$R(\vec{\kappa}) = \partial \left(\cap_{i=1}^N P_i(\kappa_i) \right)$

Decomposition of S^2_o: $\Pi_i(\vec{\kappa}) = \pi_{S^2_\infty}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$
$= \text{directions that are reflected towards } y_i.$
Reflector Problem: semi-discrete case

Punctual light at origin o, μ measure on S^2_o

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞

$P_i(\kappa_i) = \text{solid paraboloid of revolution with focal } o, \text{ direction } y_i \text{ and focal distance } \kappa_i$

$$R(\vec{\kappa}) = \partial \left(\cap_{i=1}^N P_i(\kappa_i) \right)$$

Decomposition of S^2_o: $\mathbf{P}I_i(\vec{\kappa}) = \pi_{S^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$

$= \text{directions that are reflected towards } y_i.$

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every i, $\mu(\mathbf{P}I_i(\vec{\kappa})) = \nu_i.$
Lemma: With $c(x, y) = -\log(1 - \langle x | y \rangle)$, and $\psi_i := \log(\kappa_i)$,

$$\text{PI}_i(\kappa) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \ \forall j \}. \quad \text{(Caffarelli-Oliker '94)}$$
Lemma: With \(c(x, y) = -\log(1 - \langle x|y \rangle) \), and \(\psi_i := \log(\kappa_i) \),

\[
\Pi_i(\kappa) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j \}.
\]

Proof: \(\partial P_i(\kappa_i) \) is parameterized in radial coordinates by

\[
\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1-\langle x|y_i \rangle}
\]

Caffarelli-Oliker '94
Far-Field Reflector Antenna Problem as OT

Lemma: With \(c(x, y) = -\log(1 - \langle x|y \rangle) \), and \(\psi_i := \log(\kappa_i) \),
\[
\Pi_i(\kappa) = \{ x \in S^2_0, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j \}.
\]

Proof: \(\partial P_i(\kappa_i) \) is parameterized in radial coordinates by
\[
\rho_i : x \in S^2_o \mapsto \frac{\kappa_i}{1 - \langle x|y_i \rangle}
\]
\[
x \in \Pi_i(\kappa) \iff i \in \arg \min_j \frac{\kappa_j}{1 - \langle x|y_j \rangle}
\]
Lemma: With \(c(x, y) = -\log(1 - \langle x | y \rangle) \), and \(\psi_i \equiv \log(\kappa_i) \),
\[
\Pi_i(\kappa) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j \}.
\]

Proof: \(\partial P_i(\kappa_i) \) is parameterized in radial coordinates by
\[
\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1-\langle x | y_i \rangle}
\]
\[
x \in \Pi_i(\kappa) \iff i \in \text{arg min}_j \left\{ \frac{\kappa_j}{1-\langle x | y_j \rangle} \right\}
\]
\[
\iff i \in \text{arg min}_j \left(\log(\kappa_j) - \log(1 - \langle x | y_j \rangle) \right)
\]
Far-Field Reflector Antenna Problem as OT

Lemma: With $c(x, y) = -\log(1 - \langle x | y \rangle)$, and $\psi_i := \log(\kappa_i)$, $\text{PI}_i(\kbar) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j \}$.

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$

$x \in \text{PI}_i(\kbar) \iff i \in \arg \min_j \frac{\kappa_j}{1 - \langle x | y_j \rangle}$

$\iff i \in \arg \min_j \log(\kappa_j) - \log(1 - \langle x | y_j \rangle)$

$\iff i \in \arg \min_j \psi_j + c(x, y_j)$
Far-Field Reflector Antenna Problem as OT

Lemma: With \(c(x, y) = -\log(1 - \langle x | y \rangle) \), and \(\psi_i = \log(\kappa_i) \),
\[
\Pi_i(\vec{\kappa}) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \ \forall j \}\.
\]

Proof: \(\partial P_i(\kappa_i) \) is parameterized in radial coordinates by
\[
\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1-\langle x | y_i \rangle}
\]
\[
x \in \Pi_i(\vec{\kappa}) \iff i \in \arg \min_j \frac{\kappa_j}{1-\langle x | y_j \rangle}
\]
\[
\iff i \in \arg \min_j \log(\kappa_j) - \log(1 - \langle x | y_j \rangle)
\]
\[
\iff i \in \arg \min_j \psi_j + c(x, y_j)
\]

▶ An optimal transport problem

Wang '04

Caffarelli-Oliker '94
Semi-discrete optimal transport

$\mu = \text{probability measure on } X$
with density, $X = \text{manifold}$

$\nu = \text{prob. measure on finite } Y$
$= \sum_{y \in Y} \nu_y \delta_y$
Semi-discrete optimal transport

\(\mu = \text{probability measure on } X \)
with density, \(X = \text{manifold} \)

\(\nu = \text{prob. measure on finite } Y \)
\[\nu = \sum_{y \in Y} \nu_y \delta_y \]

\(\forall y \in Y, \mu(T^{-1}(\{y\})) = \nu_y \)

in short: \(T\#\mu = \nu \).
Semi-discrete optimal transport

\[\mu = \text{probability measure on } X \]
with density, \(X = \text{manifold} \)

\[\nu = \text{prob. measure on finite } Y \]
\[= \sum_{y \in Y} \nu_\cdot \delta_y \]

Transport map: \(T : X \rightarrow Y \) s.t.
\[\forall y \in Y, \mu(T^{-1}(y)) = \nu_y \]
in short: \(T_\# \mu = \nu \).

Cost function: \(c : X \times Y \rightarrow \mathbb{R} \)
\[C_c(T) = \int_X c(x, T(x)) \, d\mu(x) \]
Semi-discrete optimal transport

\[\mu = \text{probability measure on } X \]
\[\text{with density, } X = \text{manifold} \]
\[\nu = \text{prob. measure on finite } Y \]
\[= \sum_{y \in Y} \nu_y \delta_y \]

Transport map: \(T : X \to Y \) s.t.
\[\forall y \in Y, \; \mu(T^{-1}(\{y\})) = \nu_y \]
in short: \(T\#\mu = \nu \).

Cost function: \(c : X \times Y \to \mathbb{R} \)
\[C_c(T) = \int_X c(x, T(x)) \, d\mu(x) \]
\[= \sum_y \int_{T^{-1}(y)} c(x, y) \, d\mu(x) \]
Semi-discrete optimal transport

\(\mu = \) probability measure on \(X \) with density, \(X = \) manifold

\(\nu = \) prob. measure on finite \(Y \)

\[\nu = \sum_{y \in Y} \nu_y \delta_y \]

Transport map: \(T : X \rightarrow Y \) s.t.

\[\forall y \in Y, \mu(T^{-1}(\{y\})) = \nu_y \]

in short: \(T_\# \mu = \nu \).

Cost function: \(c : X \times Y \rightarrow \mathbb{R} \)

\[C_c(T) = \int_X c(x, T(x)) \, d\mu(x) \]

\[= \sum_y \int_{T^{-1}(y)} c(x, y) \, d\mu(x) \]

Monge problem: \(\mathcal{T}_c(\mu, \nu) := \min \{ C_c(T); T_\# \mu = \nu \} \)
We assume (Twist), i.e. \(c \in C^\infty \) and \(\forall x \in X \) the map \(y \in Y \mapsto \nabla_x c(x, y) \) is injective.

\(Y \) finite set, \(\psi : Y \to \mathbb{R} \)
We assume \((\textbf{Twist})\), i.e. \(c \in C^\infty\) and \(\forall x \in X\) the map \(y \in Y \mapsto \nabla_x c(x, y)\) is injective.

\[
T_c^\psi(x) = \arg \min_{y \in Y} c(x, y) + \psi(y)
\]
Weighted Voronoi and Optimal Transport

We assume \((\text{Twist})\), i.e. \(c \in C^\infty\) and \(\forall x \in X\) the map \(y \in Y \mapsto \nabla_x c(x, y)\) is injective.

\[
T^\psi_c(x) = \arg \min_{y \in Y} c(x, y) + \psi(y)
\]

\[
\text{Vor}^\psi_c(y) = \{x \in \mathbb{R}^d; T^\psi_c(x) = y\}
\]

= generalized weighted Voronoi cell

\(Y\) finite set, \(\psi : Y \rightarrow \mathbb{R}\)
Weighted Voronoi and Optimal Transport

We assume \((\textbf{Twist})\), i.e. \(c \in C^\infty\) and \(\forall x \in X\) the map \(y \in Y \mapsto \nabla_x c(x, y)\) is injective.

\[
T^\psi_c(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)
\]
\[
\text{Vor}^\psi_c(y) = \{x \in \mathbb{R}^d; T^\psi_c(x) = y\}
\]

= generalized weighted Voronoi cell

\textbf{NB:} Under \((\textbf{Twist})\), \((\text{Vor}^\psi_c(y))_{y \in Y}\) partitions \(X\) and \(T^\psi_c\) well-defined a.e.
Weighted Voronoi and Optimal Transport

We assume \((\text{Twist})\), i.e. \(c \in C^\infty\) and \(\forall x \in X\) the map \(y \in Y \mapsto \nabla_x c(x, y)\) is injective.

\[
T_c^\psi(x) = \arg \min_{y \in Y} c(x, y) + \psi(y)
\]

\[
\text{Vor}_c^\psi(y) = \{x \in \mathbb{R}^d; T_c^\psi(x) = y\}
\]

= generalized weighted Voronoi cell

NB: Under \((\text{Twist})\), \((\text{Vor}_c^\psi(y))_{y \in Y}\) partitions \(X\) and \(T_c^\psi\) well-defined a.e.

Lemma: Given a measure \(\mu\) with density and \(\psi : Y \to \mathbb{R}\), the map \(T_c^\psi\) is a \(c\)-optimal transport between \(\mu\) and \(T_c^\psi \# \mu\).
Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

We assume \((\text{Twist})\), i.e. \(c \in C^\infty\) and \(\forall x \in X\) the map \(y \in Y \mapsto \nabla_x c(x, y)\) is injective.

\[
T^\psi_c(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)
\]

\[
\text{Vor}_c^\psi(y) = \{x \in \mathbb{R}^d; T^\psi_c(x) = y\}
\]

= generalized weighted Voronoi cell

NB: Under \((\text{Twist})\), \((\text{Vor}_c^\psi(y))_{y \in Y}\) partitions \(X\) and \(T^\psi_c\) well-defined a.e.

Lemma: Given a measure \(\mu\) with density and \(\psi : Y \to \mathbb{R}\), the map \(T^\psi_c\) is a \(c\)-optimal transport between \(\mu\) and \(T^\psi_c \# \mu\).

\[T^\psi_c \# \mu = \sum_{y \in Y} \mu(\text{Vor}_c^\psi(y)) \delta_y.\]
Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffmann, Aronov '98 Merigot '2010

We assume \(\text{(Twist)} \), i.e. \(c \in C^\infty \) and \(\forall x \in X \) the map \(y \in Y \mapsto \nabla_x c(x, y) \) is injective.

\[
T^\psi_c(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)
\]

\[
\text{Vor}^\psi_c(y) = \{ x \in \mathbb{R}^d; T^\psi_c(x) = y \}
\]

= generalized weighted Voronoi cell

NB: Under \(\text{(Twist)} \), \((\text{Vor}^\psi_c(y))_{y \in Y} \) partitions \(X \) and \(T^\psi_c \) well-defined a.e.

Lemma: Given a measure \(\mu \) with density and \(\psi : Y \to \mathbb{R} \), the map \(T^\psi_c \) is a \(c \)-optimal transport between \(\mu \) and \(T^\psi_c \# \mu \).

\[
\text{Note: } T^\psi_c \# \mu = \sum_{y \in Y} \mu(\text{Vor}^\psi_c(y)) \delta_y.
\]

\[
\text{Converse?}
\]
Lemma: With $c(x, y) = -\log(1 - \langle x | y \rangle)$, and $\psi_i := \log(\kappa_i)$,
$\Pi_i(\kappa) = \{x \in S_0^2, c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}$.
Lemma: With $c(x, y) = -\log(1 - \langle x | y \rangle)$, and $\psi_i := \log(\kappa_i)$,

$$\text{PI}_i(\kappa) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \ \forall j \}.$$
Lemma: With \(c(x, y) = -\log(1 - \langle x | y \rangle) \), and \(\psi_i := \log(\kappa_i) \),

\[
\Pi_i(\kappa) = \{ x \in S^2_0, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \ \forall j \}.
\]

The map \(T^\psi_c(x) \) is a \(c \)-optimal transport between \(\mu \) and \(T^\psi_c \# \mu \).
Lemma: With \(c(x, y) = -\log(1 - \langle x | y \rangle) \), and \(\psi_i := \log(\kappa_i) \),
\[
\pi_i(\kappa) = \{ x \in S_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \ \forall j \}.
\]

Optimal transport formulation
- \(\pi_i(\kappa) = \text{Vor}_c^{\psi}(y_i) \).
- \(T_c^{\psi}(x) = \arg \min_{y \in Y} c(x, y) + \psi(y) \)

The map \(T_c^{\psi} \) is a \(c \)-optimal transport between \(\mu \) and \(T_c^{\psi} \# \mu \).

Problem (FF): Find \(\psi_1, \ldots, \psi_N \) such that \(T_c^{\psi} \# \mu = \nu \).
Supporting paraboloids algorithm’ 99

Cafarelli-Kochengin-Oliker’99: coordinate-wise ascent, with minimum increment
Supporting paraboloids algorithm’ 99

Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t.

$$\forall y \in Y \setminus \{y_0\}, \quad \mu(\text{Vor}_c^\psi(p)) \leq \nu_y + \delta$$

While $\exists y \neq y_0$ such that $\mu(\text{Vor}_c^\psi(y)) \leq \nu_y - \delta$, **do:**

decrease $\psi(y)$ s.t. $\mu(\text{Vor}_c^\psi(y)) \in [\nu_y, \nu_y + \delta]$,

Result: ψ s.t. for all y, $|\mu(\text{Vor}_c^\psi(y)) - \nu_y| \leq \varepsilon$.

Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon / N$ and compute ψ s.t.
\[\forall y \in Y \setminus \{y_0\}, \quad \mu(\text{Vor}_c^\psi(p)) \leq \nu_y + \delta \]

While $\exists y \neq y_0$ such that $\mu(\text{Vor}_c^\psi(y)) \leq \nu_y - \delta$, **do**:

decrease $\psi(y)$ s.t. $\mu(\text{Vor}_c^\psi(y)) \in [\nu_y, \nu_y + \delta],$

Result: ψ s.t. for all y, $|\mu(\text{Vor}_c^\psi(y)) - \nu_y| \leq \varepsilon.$
Supporting paraboloids algorithm’ 99

Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon / N$ and compute ψ s.t.
\[\forall y \in Y \setminus \{y_0\}, \quad \mu(\text{Vor}_c^\psi(p)) \leq \nu_y + \delta \]

While $\exists y \neq y_0$ such that $\mu(\text{Vor}_c^\psi(y)) \leq \nu_y - \delta$, do:
\[\text{decrease } \psi(y) \text{ s.t. } \mu(\text{Vor}_c^\psi(y)) \in [\nu_y, \nu_y + \delta], \]

Result: ψ s.t. for all y, $|\mu(\text{Vor}_c^\psi(y)) - \nu_y| \leq \varepsilon$.

- Complexity of SP: N^2 / ε steps
Supporting paraboloids algorithm’ 99

Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with minimum increment

Initialization: Fix \(y_0 \in Y \), let \(\delta = \varepsilon / N \) and compute \(\psi \) s.t.
\[
\forall y \in Y \setminus \{y_0\}, \quad \mu(\text{Vor}_c^\psi(y)) \leq \nu_y + \delta
\]

While \(\exists y \neq y_0 \) such that \(\mu(\text{Vor}_c^\psi(y)) \leq \nu_y - \delta \), do:
decrease \(\psi(y) \) s.t. \(\mu(\text{Vor}_c^\psi(y)) \in [\nu_y, \nu_y + \delta] \),

Result: \(\psi \) s.t. for all \(y \), \(|\mu(\text{Vor}_c^\psi(y)) - \nu_y| \leq \varepsilon \).

- Complexity of SP: \(N^2 / \varepsilon \) steps
- Generalization of Oliker–Prussner in \(\mathbb{R}^2 \) with \(c(x, y) = \|x - y\|^2 \)
Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t.
$$\forall y \in Y \setminus \{y_0\}, \quad \mu(\text{Vor}_c^\psi(p)) \leq \nu_y + \delta$$

While $\exists y \neq y_0$ such that $\mu(\text{Vor}_c^\psi(y)) \leq \nu_y - \delta$, do:
- decrease $\psi(y)$ s.t. $\mu(\text{Vor}_c^\psi(y)) \in [\nu_y, \nu_y + \delta]$.

Result: ψ s.t. for all y, $|\mu(\text{Vor}_c^\psi(y)) - \nu_y| \leq \varepsilon$.

- Complexity of SP: $\mathcal{O}(N^2/\varepsilon)$ steps
- Generalization of Oliker–Prussner in \mathbb{R}^2 with $c(x, y) = \|x - y\|^2$
- Generalization: MTW$^+$ costs Kitagawa ’12
Concave maximization

Theorem: κ solves (FF) iff $\psi = \log(\kappa)$ maximizes

$$\Phi(\psi) := \sum_i \int_{\text{Vor}_c(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i$$

with $c(x, y) = -\log(1 - \langle x \mid y \rangle)$.

Aurenhammer, Hoffman, Aronov '98
Theorem: \(\vec{\kappa} \) solves \((\text{FF})\) iff \(\vec{\psi} = \log(\vec{\kappa}) \) maximizes

\[
\Phi(\psi) := \sum_i \int_{\text{Vor}_C(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i
\]

with \(c(x, y) = -\log(1 - \langle x | y \rangle) \).

A consequence of Kantorovich duality.

Aurenhammer, Hoffman, Aronov ’98
Proof of concave maximization thm

Supdifferentials. Let $\Phi : \mathbb{R}^d \to \mathbb{R}$ and $\psi \in \mathbb{R}^d$.

$\triangleright \quad \partial^+ \Phi(\psi) = \{ v \in \mathbb{R}^d, \quad \Phi(\varphi) \leq \Phi(\psi) + \langle \varphi - \psi | v \rangle \quad \forall \varphi \in \mathbb{R}^d \}.$
Proof of concave maximization thm

Supdifferentials. Let $\Phi : \mathbb{R}^d \to \mathbb{R}$ and $\psi \in \mathbb{R}^d$.

- $\partial^+ \Phi(\psi) = \{v \in \mathbb{R}^d, \quad \Phi(\varphi) \leq \Phi(\psi) + \langle \varphi - \psi | v \rangle \quad \forall \varphi \in \mathbb{R}^d\}$.
- Φ concave $\iff \forall \psi \in \mathbb{R}^d \partial^+ \Phi(\psi) \neq \emptyset$.
- In this case: $\partial^+ \Phi(\psi) = \{\nabla \Phi(\psi)\}$ a.e.
- ψ maximum of $\Phi \iff 0 \in \partial^+ \Phi(\psi)$

![Graph of a concave function with supdifferentials](image-url)
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

For all \(\varphi \in \mathbb{R}^d \)
\[\min_{1 \leq i \leq N} [c(x, y_i) + \varphi_i] \leq [c(x, y_{T\psi}(x)) + \varphi_{T\psi}(x)] \]
Proof of concave maximization thm

\[
\Phi(\psi) := \sum_i \int_{\text{Vor}_c^\psi(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \\
= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i
\]

For all \(\varphi \in \mathbb{R}^d \)
\[
\min_{1 \leq i \leq N} [c(x, y_i) + \varphi_i] \leq [c(x, y_{T_\psi(x)}) + \varphi_{T_\psi(x)}]
\]

\(T_\psi(x) = i \iff x \in \text{Vor}_c^\psi(y_i) \)
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c(\psi_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]
\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

For all \(\varphi \in \mathbb{R}^d \)
\[\min_{1 \leq i \leq N} [c(x, y_i) + \varphi_i] \leq [c(x, y_{T_\psi}(x)) + \varphi_{T_\psi}(x)] \]
\[\leq [c(x, y_{T_\psi}(x)) + \psi_{T_\psi}(x)] + \varphi_{T_\psi}(x) - \psi_{T_\psi}(x) \]

\[T_\psi(x) = i \iff x \in \text{Vor}_c(\psi_i) \]
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]
\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

For all \(\varphi \in \mathbb{R}^d \)
\[\min_{1 \leq i \leq N} [c(x, y_i) + \varphi_i] \leq [c(x, y_{T_\psi}(x)) + \varphi_{T_\psi}(x)] \]
\[\leq [c(x, y_{T_\psi}(x)) + \psi_{T_\psi}(x)] + \varphi_{T_\psi}(x) - \psi_{T_\psi}(x) \]
\[\int_{S^{d-1}} \Phi(\varphi) + \sum_i \varphi_i \nu_i \]
\[\Phi(\psi) + \sum_i \psi_i \nu_i \]
\[\int_{S^{d-1}} \varphi_{T_\psi}(x) - \psi_{T_\psi}(x) \, d\mu(x) \]

\(T_\psi(x) = i \iff x \in \text{Vor}_c(y_i) \)
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c^\psi(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]
\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \]

\[T_\psi(x) = i \iff x \in \text{Vor}_c^\psi(y_i) \]

\[\Phi(\varphi) - \Phi(\psi) \leq \int_{S^{d-1}} \varphi_{T_\psi(x)} - \psi_{T_\psi(x)} \, d\mu(x) - \sum_i (\varphi_i - \psi_i) \nu_i \]
Proof of concave maximization thm

\[
\Phi(\psi) := \sum_i \int_{\text{Vor}_c^\psi(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \\
= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum_i \psi_i \nu_i \\
T_\psi(x) = i \iff x \in \text{Vor}_c^\psi(y_i)
\]

\[
\Phi(\varphi) - \Phi(\psi) \leq \int_{S^{d-1}} \varphi_{T_\psi(x)} - \psi_{T_\psi(x)} \, d\mu(x) - \sum_i (\varphi_i - \psi_i) \nu_i \\
\leq \sum_{1 \leq i \leq N} \left[\int_{\text{Vor}_c^\psi(y_i)} d\mu(x) - \nu_i \right] (\varphi_i - \psi_i) \\
= \langle D\Phi(\psi) | \varphi - \psi \rangle \\
\text{with } D\Phi(\psi) = \left(\mu(\text{Vor}_c^\psi(y_i)) - \nu_i \right)
\]
Proof of concave maximization thm

\[
\Phi(\psi) := \sum \int_{\text{Vor}_c^\psi(y_i)} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum \psi_i \nu_i \\
= \int_{S^{d-1}} \min_{1 \leq i \leq N} [c(x, y_i) + \psi_i] \, d\mu(x) - \sum \psi_i \nu_i
\]

\[
\Phi(\varphi) \leq \Phi(\psi) + \langle D\Phi(\psi) | \varphi - \psi \rangle
\]

with \(D\Phi(\psi) = (\mu(\text{Vor}_c^\psi(y_i)) - \nu_i) \)
Proof of concave maximization thm

\[\Phi(\psi) := \sum_i \int_{\text{Vor}_c^\psi(y_i)} \left[c(x, y_i) + \psi_i \right] \, d\mu(x) - \sum_i \psi_i \nu_i \]
\[= \int_{S^{d-1}} \min_{1 \leq i \leq N} \left[c(x, y_i) + \psi_i \right] \, d\mu(x) - \sum_i \psi_i \nu_i \]

\[T_\psi(x) = i \iff x \in \text{Vor}_c^\psi(y_i) \]

\[\Phi(\varphi) \leq \Phi(\psi) + \langle D\Phi(\psi) | \varphi - \psi \rangle \]

with \[D\Phi(\psi) = \left(\mu(\text{Vor}_c^\psi(y_i)) - \nu_i \right) \]

- \(D\Phi(\psi) \in \partial^+ \Phi(\psi) \Rightarrow \Phi \) concave.
- \(D\Phi(\psi) \) depends continuously on \(\psi \Rightarrow \Phi \) of class \(C^1 \).
- \(\psi \) maximum of \(\Phi \) \iff \(\mu(\text{Vor}_c^\psi(y_i)) = \nu_i \ \forall i \)
2. Implementation
Implementation of Convex Programming ($-\Phi$)

- Quasi-Newton scheme:

 Computation of descent direction / time step

 LBFGS: low-storage version of the BFGS quasi-Newton scheme
Implementation of Convex Programming ($-\Phi$)

- **Quasi-Newton scheme:**
 Computation of descent direction / time step
 LBFGS: low-storage version of the BFGS quasi-Newton scheme

- **Evaluation of Φ and $\nabla \Phi$:**
 \[
 \int_{\text{Vor}_c(p)} \, d\mu(x) \\
 \int_{\text{Vor}_c(y)} c(x, y) \, d\mu(x)
 \]

 Main difficulty: computation of $\text{Vor}_c(y)$
Implementation of Convex Programming ($-\Phi$)

- Quasi-Newton scheme:
 Computation of descent direction / time step
 LBFGS: low-storage version of the BFGS quasi-Newton scheme

- Evaluation of Φ and $\nabla\Phi$:

$$\int_{\text{Vor}_c^\psi(p)} d\mu(x)$$
$$\int_{\text{Vor}_c^\psi(y)} c(x, y) d\mu(x)$$

Main difficulty: computation of $\text{Vor}_c^\psi(y)$
Computation of the generalized Voronoi cells

Definition: Given \(P = \{ p_i \}_{1 \leq i \leq N} \subseteq \mathbb{R}^d \) and \((\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N\),

\[
\text{Pow}_P^\omega(p_i) := \{ x \in \mathbb{R}^d; i = \arg \min_j \| x - p_j \|^2 + \omega_j \}
\]
Computation of the generalized Voronoi cells

Definition: Given $P = \{p_i\}_{1 \leq i \leq N} \subseteq \mathbb{R}^d$ and $(\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N$

\[
\text{Pow}^\omega_P(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_j \|x - p_j\|^2 + \omega_j\}
\]

- Efficient computation of $(\text{Pow}^\omega_P(p_i))_i$ using **CGAL** ($d = 2, 3$)
Computation of the generalized Voronoi cells

Definition: Given $P = \{p_i\}_{1 \leq i \leq N} \subseteq \mathbb{R}^d$ and $(\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N$

$$\text{Pow}_P^\omega(p_i) := \{x \in \mathbb{R}^d; i = \arg \min_{j} \|x - p_j\|^2 + \omega_j\}$$

- Efficient computation of $(\text{Pow}_P^\omega(p_i))_i$ using **CGAL** ($d = 2, 3$)

Lemma: With $\psi = \log(\kappa)$, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_j}$,

$$\text{Vor}_{c}^\psi(y_i) = \text{Pow}_P^\omega(p_i) \cap S^2$$
Computation of the generalized Voronoi cells

Definition: Given $P = \{p_i\}_{1 \leq i \leq N} \subseteq \mathbb{R}^d$ and $(\omega_i)_{1 \leq i \leq N} \in \mathbb{R}^N$

$\text{Pow}_P^\omega(p_i) := \{x \in \mathbb{R}^d ; i = \arg \min_j \|x - p_j\|^2 + \omega_j\}$

- Efficient computation of $(\text{Pow}_P^\omega(p_i))_i$ using \textbf{CGAL} ($d = 2, 3$)

Lemma: With $\bar{\psi} = \log(\kappa)$, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_j}$,

$\text{Vor}_c^\psi(y_i) = \text{Pow}_P^\omega(p_i) \cap S^2$

Proof: $x \in \text{Vor}_c^\psi(y_i) \subseteq S^2$

$\iff i \in \arg \min_j \frac{\kappa_j}{1 - \langle x | y_j \rangle}$

$\iff i \in \arg \min_j \langle x | \frac{y_j}{\kappa_j} \rangle - \frac{1}{\kappa_j}$

$\iff i \in \arg \min_j \|x + \frac{y_j}{2\kappa_j} - p_j\|^2 - \|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_j}$

$\iff x \in \text{Pow}_P^\omega(p_i) \cap S^2$
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_{P}^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}^\omega_P(p_i) \cap S^2$ can be disconnected, have holes, etc.

- **boundary representation**: a family of oriented cycles composed of circular arcs per cell.
Computation of the generalized Voronoi cells

- In general, the cells $C_i := \text{Pow}_P^\omega(p_i) \cap S^2$ can be disconnected, have holes, etc.

- **Boundary representation:** a family of oriented cycles composed of circular arcs per cell.

- Lower complexity bound: $\Omega(N \log N)$.
Computation of the generalized Voronoi cells

- in general, the cells \(C_i := \text{Pow}_P^\omega(p_i) \cap S^2 \) can be disconnected, have holes, etc.

- **boundary representation:** a family of oriented cycles composed of circular arcs per cell.

- lower complexity bound: \(\Omega(N \log N) \).

Algorithm: for each cell \(C_i = \text{Pow}_P^\omega(p_i) \cap S^2 \)
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_{P}^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- **boundary representation**: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \text{Pow}_{P}^{\omega}(p_i) \cap S^2$
1. Compute *implicitly* the intersection between every edge of $\text{Pow}_{P}^{\omega}(p_i)$ and S^2. Set vertices $V := \{ \bullet \}$
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_P^\omega(p_i) \cap S^2$ can be disconnected, have holes, etc.
- **boundary representation:** a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \text{Pow}_P^\omega(p_i) \cap S^2$

1. Compute **implicitly** the intersection between every edge of $\text{Pow}_P^\omega(p_i)$ and S^2. Set vertices $V := \{ \bullet \}$
2. Scan the **edges** of every 2-facet in clockwise order and construct oriented edges E between vertices.
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_P(p_i) \cap S^2$ can be disconnected, have holes, etc.
- **boundary representation**: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \text{Pow}_P(p_i) \cap S^2$

1. Compute **implicitly** the intersection between every edge of $\text{Pow}_P(p_i)$ and S^2. Set vertices $V := \{ \bullet \}$
2. Scan the **edges** of every 2-facet in clockwise order and construct oriented edges E between vertices.
3. Extract oriented cycles from $G = (V, E)$.
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_P(p_i) \cap S^2$ can be disconnected, have holes, etc.
- **boundary representation**: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \text{Pow}_P(p_i) \cap S^2$

1. Compute **implicitly** the intersection between every edge of $\text{Pow}_P(p_i)$ and S^2. Set vertices $V := \{\bullet\}$
2. Scan the **edges** of every 2-facet in clockwise order and construct oriented **edges** E between vertices.
3. Extract oriented cycles from $G = (V, E)$.
4. Handle circular arcs without vertex separately.
Computation of the generalized Voronoi cells

- in general, the cells $C_i := \text{Pow}_P^\omega(p_i) \cap S^2$ can be disconnected, have holes, etc.

- **boundary representation:** a family of oriented cycles composed of circular arcs per cell.

- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \text{Pow}_P^\omega(p_i) \cap S^2$

1. Compute **implicitly** the intersection between every edge of $\text{Pow}_P^\omega(p_i)$ and S^2. Set vertices $V := \{ \bullet \}$
2. Scan the **edges** of every 2-facet in clockwise order and construct oriented edges E between vertices.
3. Extract oriented cycles from $G = (V, E)$.
4. Handle circular arcs without vertex separately.

Complexity: $O(N \log N + C)$ where $C =$ complexity of the Power diagram.
Numerical results (1)

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \] obtained by discretizing a picture of G. Monge.

\[\mu = \text{uniform measure on half-sphere } S^2_+ \]

\(N = 1000 \)

drawing of \((\text{Vor}_c^{\psi}(y_i)) \) (on \(S^2_+ \)) for \(\psi = 0 \)
Numerical results (1)
normalized measure by discretizing a picture of G. Monge.

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \]

\[\mu = \text{uniform measure on half-sphere } S_+^2 \]

\[N = 1000 \]

drawing of \(\text{Vor}_c^{\psi}(y_i) \) (on \(S_+^2 \)) for \(\psi_{sol} \)
Numerical results (1)

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \] obtained by discretizing a picture of G. Monge.

\[\mu = \text{uniform measure on half-sphere } S^2_+ \]

\[N = 1000 \]

rendering of the image reflected at infinity (using LuxRender)
Numerical results (2)

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \] obtained by discretizing a picture of G. Monge.

\[\mu = \text{uniform measure on half-sphere } S_+^2 \quad N = 15000 \]

drawing of \((Vor^\psi_c(y_i))\) (on \(S_+^2\)) for \(\psi_{sol}\)
Numerical results (2)

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \] obtained by discretizing a picture of G. Monge.

\[\mu = \text{uniform measure on half-sphere } S^2_+ \]

\(N = 15000 \)

solution to the far-field reflector problem: \(R(\kappa_{sol}) \)
Numerical results (2)

\[\nu = \sum_{i=1}^{N} \nu_i \delta_{x_i} \] obtained by discretizing a picture of G. Monge.

\[\mu = \text{uniform measure on half-sphere } S^2_+ \]

\[N = 15000 \]

rendering of the image reflected at infinity (using LuxRender)
3. Complexity of paraboloid intersection
Theorem: For N paraboloids, the complexity of the diagram $(\text{PI}_i(\kappa))_{1 \leq i \leq N}$ is $O(N)$.
Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $(\text{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is $O(N)$.

Complexity: $E + F + V$, where

- $E = \#$ edges
- $V = \#$ vertices
- $F = \text{total} \ # \ of \ connected \ components$
Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $(\text{PI}_i(\kappa))_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$
Complexity of the paraboloid intersection (PI)

Theorem: For \(N \) paraboloids, the complexity of the diagram \((\text{PI}_i(\kappa))^1_{i \leq N}\) is \(O(N) \).

Proof:

\[F \leq N \]

Lemma: The projection of \(\partial P_i \cap P_j \) onto the plane \(\{ y_i \} \) is a disc.

\(\text{PI}_3(\kappa) \cap \partial P_3(\kappa_3) \)

\(\{ y_3 \} \)

\(\{ y_i \} \)

\(\partial P_3 \)

\(\text{PI}_3(\kappa) \)

\(P_3 \)

\(P_2 \)

\(P_1 \)

\(O \)

\(\text{PI}_i(\kappa) \)

\(\{ y_i \} \)

\(P_i \)

\(P_j \)
Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $(\text{PI}_i(\overline{\kappa}))_{1 \leq i \leq N}$ is $O(N)$.

Proof:

$F \leq N$

$\{y_3\} \perp$

$\{y\} \perp$

$\{y\}$

$\{y\}
Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram $(\text{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is $O(N)$.

Proof:

$\implies F \leq N$

\implies the projection of $R(\vec{\kappa}) \cap \partial P_i$ on $\{y_i\}^\perp$ is convex

$\implies \text{PI}_i(\vec{\kappa})$ is connected.

Lemma: The projection of $\partial P_i \cap P_j$ onto the plane $\{y_i\}^\perp$ is a disc.
Theorem: For \(N \) paraboloids, the complexity of the diagram
\((\text{PI}_i(\bar{\kappa}))_{1 \leq i \leq N}\) is \(O(N) \).

Proof:

\(F \leq N \)

Every vertex has 3 edges \(\Rightarrow 3V \leq 2E \).
Complexity of the paraboloid intersection (PI)

Theorem: For N paraboloids, the complexity of the diagram
$(\text{PI}_i(\bar{\kappa}))_{1 \leq i \leq N}$ is $O(N)$.

Proof:

- $F \leq N$

- Every vertex has 3 edges $\Rightarrow 3V \leq 2E$.

- Euler’s formula $V - E + F = 2$ implies $V \leq 2F - 4$ and $E \leq 3F - 6$.
4. Other types of reflectors
Other type: paraboloid union (PU)

Punctual light at origin o, μ measure on S_o^2

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2
Other type: paraboloid union (PU)

Punctual light at origin o, μ measure on S^2_o.
Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞.

$P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o$, direction y_i and focal distance κ_i.
Punctual light at origin o, μ measure on S^2_o
Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_{∞}

$P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o,$
direction y_i and focal distance κ_i

$$R(\vec{\kappa}) = \partial \left(\cup_{i=1}^{N} P_i(\kappa_i) \right)$$
Other type: paraboloid union (PU)

Punctual light at origin o, μ measure on S_o^2
Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

$P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o,$
$\text{direction } y_i \text{ and focal distance } \kappa_i$

$R(\bar{\kappa}) = \partial \left(\bigcup_{i=1}^{N} P_i(\kappa_i) \right)$
Other type: paraboloid union (PU)

Punctual light at origin o, μ measure on S^2_o

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S^2_∞

$P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o,$
$\text{direction } y_i \text{ and focal distance } \kappa_i$

\[
R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^N P_i(\kappa_i) \right)
\]

\[
\text{PU}_i(\vec{\kappa}) = \pi_{S^2_o}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))
\]
Other type: paraboloid union (PU)

Punctual light at origin o, μ measure on S_0^2

Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_2^∞

$P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o, \text{ direction } y_i \text{ and focal distance } \kappa_i$

$R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^N P_i(\kappa_i) \right)$

$PU_i(\vec{\kappa}) = \pi_{S_0^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$

Far-field reflector antenna problem:

Problem (FF'): Find $\kappa_1, \ldots, \kappa_N$ such that for every i, $\mu(\text{PU}_i(\vec{\kappa})) = \nu_i$.
Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S^2_o

Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3
Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2

Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

$E_i(e_i) = \text{convex hull of ellipsoid with focals } o \text{ and } y_i, \text{ and eccentricity } e_i$
Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S^2_o

Prescribed near-field: $\nu = \sum_i \nu_i \delta y_i$ on \mathbb{R}^3

$$E_i(e_i) = \text{convex hull of ellipsoid with focals } o \text{ and } y_i, \text{ and eccentricity } e_i$$
Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S_o^2
Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

$E_i(e_i) =$ convex hull of ellipsoid with focals o and y_i, and eccentricity e_i

$R(\bar{e}) = \partial \left(\cap_{i=1}^N E_i(e_i) \right)$
Near-Field Reflector Antenna Problem

Punctual light at origin o, μ measure on S^2_o

Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

$E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i, and eccentricity e_i

$R(\vec{e}) = \partial \left(\cap_{i=1}^N E_i(e_i) \right)$

$EI_i(\vec{e}) = \pi S^2_o (R(\vec{e}) \cap \partial E_i(\kappa_i))$
Near-Field Reflector Antenna Problem

- Punctual light at origin o, measure on S_o^2
- Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3
- $E_i(e_i) = \text{convex hull of ellipsoid with focals } o \text{ and } y_i, \text{ and eccentricity } e_i$
- $R(e) = \partial (\cap_{i=1}^N E_i(e_i))$
- $EI_i(e) = \pi S_o^2 (R(e) \cap \partial E_i(\kappa_i))$

Near-field reflector antenna problem:

Problem (NF): Find e_1, \ldots, e_N such that for every i, $\mu(EI_i(e)) = \nu_i$.

amount of light reflected to the point y_i.

Oliker '04
Complexity of a single iteration

Complexity of union/intersection of solid confocal quadric of revolutions in \mathbb{R}^3:

<table>
<thead>
<tr>
<th>Solid Type</th>
<th>Combinatorial complexity</th>
<th>Computational c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraboloid intersection</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \log n)$</td>
</tr>
<tr>
<td>Paraboloid union</td>
<td>$\Omega(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Ellipsoid intersection</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>Ellipsoid union</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
</tbody>
</table>

$\Omega(n^2)$ for ellipsoids

faces + points + edges
Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.
A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells.
Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Future work:

- Near field reflector problem
- complexity of paraboloid union?
- quantitative stability results?
Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells.

Future work:

- Near field reflector problem
- Complexity of paraboloid union?
- Quantitative stability results?

Thank you!