Reflector antenna problem

Boris Thibert

LJK Université de Grenoble

Joint work with Quentin Mérigot and Pedro Machado Journées de Géométrie Algorithmique December 16-20, 2013

1

Motivation

Motivation

Motivation

Pb : find the reflector surface

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Snell's law

$$T_R: x \in \mathcal{S}_0^2 \mapsto y = x - 2\langle x | n \rangle n$$

Brenier formulation $T_{\sharp}\mu = \nu$

Punctual light at origin $o,~\mu$ measure on \mathcal{S}_o^2 Prescribed far-field: ν on \mathcal{S}_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Snell's law

$$T_R: x \in \mathcal{S}_0^2 \mapsto y = x - 2\langle x | n \rangle n$$

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Snell's law

$$T_R: x \in \mathcal{S}_0^2 \mapsto y = x - 2\langle x | n \rangle n$$

Brenier formulation $T_{\sharp}\mu = \nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

Brenier formulation $T_{\sharp}\mu = \nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Snell's law

$$T_R: x \in \mathcal{S}_0^2 \mapsto y = x - 2\langle x | n \rangle n$$

 $\begin{array}{l} \mbox{Monge-Ampere equation} \\ \mbox{If } \mu(x) = f(x) dx \mbox{ and } \nu(y) = g(y) dy \\ g(T(x)) \det(DT(x)) = f(x) \end{array}$

highly non linear

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: ν on S_∞^2

Goal: Find a surface R which sends (S_o^2, μ) to (S_∞, ν) under reflection by Snell's law.

▶ R is parameterized over S_o^2

Snell's law

$$T_R: x \in \mathcal{S}_0^2 \mapsto y = x - 2\langle x | n \rangle n$$

Brenier formulation $T_{\sharp}\mu = \nu$ i.e. for every borelian B $\mu(T^{-1}(B)) = \nu(B)$

Monge-Ampere equation If $\mu(x) = f(x)dx$ and $\nu(y) = g(y)dy$ $g(T(x)) \det(DT(x)) = f(x)$

highly non linear

Existence

Caffarelli & Oliker 94

Regularity, uniqueness Wang 96, Guan & Wang 98

Punctual light at origin o, μ measure on \mathcal{S}_o^2

Punctual light at origin o, μ measure on \mathcal{S}_o^2

Prescribed far-field:
$$\nu = \nu_1 \delta_{y_1}$$
 on \mathcal{S}^2_{∞}

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \nu_1 \delta_{y_1}$ on S_∞^2 R : paraboloid of direction y_1 and focal O

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

 $P_i(\kappa_i) =$ solid paraboloid of revolution with focal o, direction y_i and focal distance κ_i

$$R(\vec{\kappa}) = \partial \left(\bigcap_{i=1}^{N} P_i(\kappa_i) \right)$$

Decomposition of S_o^2 : $\operatorname{PI}_i(\vec{\kappa}) = \pi_{S_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$ = directions that are reflected towards y_i .

Decomposition of S_o^2 : $\operatorname{PI}_i(\vec{\kappa}) = \pi_{S_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$ = directions that are reflected towards y_i .

Problem (FF): Find $\kappa_1, \ldots, \kappa_N$ such that for every i, $\mu(\operatorname{PI}_i(\vec{\kappa})) = \nu_i$.

amount of light reflected in direction y_i .

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

Proof: $\partial P_i(\kappa_i)$ is parameterized in radial coordinates by $\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$

$$x \in \mathrm{PI}_i(\vec{\kappa}) \iff i \in \arg\min_j \frac{\kappa_j}{1 - \langle x | y_j \rangle}$$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

roof:
$$\partial P_i(\kappa_i)$$
 is parameterized in radial coordinates by
 $\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$
 $x \in \operatorname{PI}_i(\vec{\kappa}) \iff i \in \arg\min_j \frac{\kappa_j}{1 - \langle x | y_j \rangle}$
 $\iff i \in \arg\min_j \log(\kappa_j) - \log(1 - \langle x | y_j \rangle)$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

roof:
$$\partial P_i(\kappa_i)$$
 is parameterized in radial coordinates by
 $\rho_i : x \in S_o^2 \mapsto \frac{\kappa_i}{1 - \langle x | y_i \rangle}$
 $x \in \operatorname{PI}_i(\vec{\kappa}) \iff i \in \arg\min_j \frac{\kappa_j}{1 - \langle x | y_j \rangle}$
 $\iff i \in \arg\min_j \log(\kappa_j) - \log(1 - \langle x | y_j \rangle)$
 $\iff i \in \arg\min_j \psi_j + c(x, y_j)$

Lemma: With
$$c(x, y) = -\log(1 - \langle x | y \rangle)$$
, and $\psi_i := \log(\kappa_i)$,
 $\operatorname{PI}_i(\vec{\kappa}) = \{x \in \mathcal{S}_0^2, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j \quad \forall j\}.$

Caffarelli-Oliker '94

$$\begin{array}{c} P_{3} \\ P_{1} \end{array} \qquad \begin{array}{c} P_{1} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{3} \\ P_{2} \\ P_{3} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\$$

► An optimal transport problem Wang '04

- $$\label{eq:multiplicative} \begin{split} \mu &= \text{probability measure on } X \\ & \text{with density, } X = \text{manifold} \end{split}$$

 $\begin{array}{l} \nu = \text{prob. measure on finite } Y \\ = \sum_{y \in Y} \nu_y \delta_y \end{array}$

Transport map: $T: X \to Y$ s.t.

 $\forall y \in Y, \ \mu(T^{-1}(\{y\})) = \nu_y$

in short: $T_{\#}\mu = \nu$.

Transport map: $T: X \to Y$ s.t.

$$\forall y \in Y, \ \mu(T^{-1}(\{y\})) = \nu_y$$

in short: $T_{\#}\mu = \nu$.

Cost function: $c: X \times Y \to \mathbb{R}$ $\mathcal{C}_c(T) = \int_X c(x, T(x)) d\mu(x)$

0

 $\nu = \text{prob.} \text{ measure on finite } Y$ $= \sum_{y \in Y} \nu_y \delta_y$

Transport map: $T: X \to Y$ s.t.

$$\forall y \in Y, \ \mu(T^{-1}(\{y\})) = \nu_y$$

in short: $T_{\#}\mu = \nu$.

Cost function: $c : X \times Y \to \mathbb{R}$ $\mathcal{C}_c(T) = \int_X c(x, T(x)) \,\mathrm{d}\,\mu(x)$ $= \sum_y \int_{T^{-1}(y)} c(x, y) \,\mathrm{d}\,\mu(x)$

Transport map: $T: X \to Y$ s.t.

 $\forall y \in Y, \ \mu(T^{-1}(\{y\})) = \nu_y$

in short: $T_{\#}\mu = \nu$.

Cost function: $c : X \times Y \to \mathbb{R}$ $\mathcal{C}_c(T) = \int_X c(x, T(x)) \,\mathrm{d}\,\mu(x)$ $= \sum_y \int_{T^{-1}(y)} c(x, y) \,\mathrm{d}\,\mu(x)$

Monge problem: $\mathcal{T}_c(\mu,\nu) := \min\{\mathcal{C}_c(T); T_{\#}\mu = \nu\}$

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

Y finite set, $\psi:Y\to \mathbb{R}$

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

the map $y \in Y \mapsto \nabla_x c(x,y)$ is injective. \circ

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$
$$\operatorname{Vor}_c^{\psi}(y) = \{ x \in \mathbb{R}^d; \ T_c^{\psi}(x) = y \}$$

We assume **(Twist)**, i.e. $c \in \mathcal{C}^{\infty}$ and $\forall x \in X$

= generalized weighted Voronoi cell

Y finite set, $\psi:Y\to \mathbb{R}$

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi:Y\to \mathbb{R}$

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$
$$\operatorname{Vor}_c^{\psi}(y) = \{ x \in \mathbb{R}^d; \ T_c^{\psi}(x) = y \}$$

= generalized weighted Voronoi cell

NB: Under **(Twist)**, $(\operatorname{Vor}_{c}^{\psi}(y))_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi:Y\to \mathbb{R}$

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$
$$\operatorname{Vor}_c^{\psi}(y) = \{ x \in \mathbb{R}^d; \ T_c^{\psi}(x) = y \}$$

= generalized weighted Voronoi cell

NB: Under **(Twist)**, $(\operatorname{Vor}_{c}^{\psi}(y))_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \to \mathbb{R}$, the map T_c^{ψ} is a *c*-optimal transport between μ and $T_{c\#}^{\psi}\mu$.

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi:Y\to \mathbb{R}$

7

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$
$$\operatorname{Vor}_c^{\psi}(y) = \{ x \in \mathbb{R}^d; \ T_c^{\psi}(x) = y \}$$

= generalized weighted Voronoi cell

NB: Under **(Twist)**, $(\operatorname{Vor}_{c}^{\psi}(y))_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \to \mathbb{R}$, the map T_c^{ψ} is a *c*-optimal transport between μ and $T_{c\#}^{\psi}\mu$.

• Note:
$$T_{c\#}^{\psi}\mu = \sum_{y \in Y} \mu(\operatorname{Vor}_{c}^{\psi}(y))\delta_{y}$$
Weighted Voronoi and Optimal Transport

Aurenhammer, Hoffman, Aronov '98 Merigot '2010

Y finite set, $\psi:Y\to \mathbb{R}$

7

We assume **(Twist)**, i.e. $c \in C^{\infty}$ and $\forall x \in X$ the map $y \in Y \mapsto \nabla_x c(x, y)$ is injective.

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$
$$\operatorname{Vor}_c^{\psi}(y) = \{ x \in \mathbb{R}^d; \ T_c^{\psi}(x) = y \}$$

= generalized weighted Voronoi cell

?

NB: Under **(Twist)**, $(\operatorname{Vor}_{c}^{\psi}(y))_{y \in Y}$ partitions X and T_{c}^{ψ} well-defined a.e.

Lemma: Given a measure μ with density and $\psi: Y \to \mathbb{R}$, the map T_c^{ψ} is a *c*-optimal transport between μ and $T_{c\#}^{\psi}\mu$.

► Note:
$$T_{c\#}^{\psi}\mu = \sum_{y \in Y} \mu(\operatorname{Vor}_{c}^{\psi}(y))\delta_{y}$$
. ► Converse

Optimal transport formulation

$$\triangleright \operatorname{PI}_i(\vec{\kappa}) = \operatorname{Vor}_c^{\psi}(y_i).$$

$$T_c^{\psi}(x) = \arg\min_{y \in Y} c(x, y) + \psi(y)$$

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t. $\forall y \in Y \setminus \{y_0\}, \quad \mu(\operatorname{Vor}_c^{\psi}(p)) \leq \nu_y + \delta$ **While** $\exists y \neq y_0$ such that $\mu(\operatorname{Vor}_c^{\psi}(y)) \leq \nu_y - \delta$, **do:** decrease $\psi(y)$ s.t. $\mu(\operatorname{Vor}_c^{\psi}(y)) \in [\nu_y, \nu_y + \delta]$, **Result:** ψ s.t. for all y, $|\mu(\operatorname{Vor}_c^{\psi}(y)) - \nu_y| \leq \varepsilon$.

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t. $\forall y \in Y \setminus \{y_0\}, \ \mu(\operatorname{Vor}_c^{\psi}(p)) \leq \nu_y + \delta$

While $\exists y \neq y_0$ such that $\mu(\operatorname{Vor}_c^{\psi}(y)) \leq \nu_y - \delta$, do:

decrease $\psi(y)$ s.t. $\mu(\operatorname{Vor}_{c}^{\psi}(y)) \in [\nu_{y}, \nu_{y} + \delta]$,

Result: ψ s.t. for all y, $|\mu(\operatorname{Vor}_{c}^{\psi}(y)) - \nu_{y}| \leq \varepsilon$.

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t. $\forall y \in Y \setminus \{y_0\}, \ \mu(\operatorname{Vor}_c^{\psi}(p)) \leq \nu_y + \delta$

While
$$\exists y \neq y_0$$
 such that $\mu(\operatorname{Vor}_c^{\psi}(y)) \leq \nu_y - \delta$, do:
decrease $\psi(y)$ s.t. $\mu(\operatorname{Vor}_c^{\psi}(y)) \in [\nu_y, \nu_y + \delta]$,

Result: ψ s.t. for all y, $|\mu(\operatorname{Vor}_{c}^{\psi}(y)) - \nu_{y}| \leq \varepsilon$.

• Complexity of SP: N^2/ε steps

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t. $\forall y \in Y \setminus \{y_0\}, \ \mu(\operatorname{Vor}_c^{\psi}(p)) \leq \nu_y + \delta$

While
$$\exists y \neq y_0$$
 such that $\mu(\operatorname{Vor}_c^{\psi}(y)) \leq \nu_y - \delta$, do:
decrease $\psi(y)$ s.t. $\mu(\operatorname{Vor}_c^{\psi}(y)) \in [\nu_y, \nu_y + \delta]$,

Result: ψ s.t. for all y, $|\mu(\operatorname{Vor}_{c}^{\psi}(y)) - \nu_{y}| \leq \varepsilon$.

- Complexity of SP: N^2/ε steps
- ▶ Generalization of Oliker–Prussner in \mathbb{R}^2 with $c(x,y) = \|x y\|^2$

Cafarelli-Kochengin-Oliker'99:

coordinate-wise ascent, with minimum increment

Initialization: Fix $y_0 \in Y$, let $\delta = \varepsilon/N$ and compute ψ s.t. $\forall y \in Y \setminus \{y_0\}, \ \mu(\operatorname{Vor}_c^{\psi}(p)) \leq \nu_y + \delta$

While $\exists y \neq y_0$ such that $\mu(\operatorname{Vor}_c^{\psi}(y)) \leq \nu_y - \delta$, do: decrease $\psi(y)$ s.t. $\mu(\operatorname{Vor}_c^{\psi}(y)) \in [\nu_y, \nu_y + \delta]$,

Result: ψ s.t. for all y, $|\mu(\operatorname{Vor}_{c}^{\psi}(y)) - \nu_{y}| \leq \varepsilon$.

- Complexity of SP: N^2/ε steps
- ▶ Generalization of Oliker–Prussner in \mathbb{R}^2 with $c(x, y) = ||x y||^2$
- ► Generalization: MTW⁺ costs Kitagawa '12

Concave maximization

Theorem: $\vec{\kappa}$ solves **(FF)** iff $\vec{\psi} = \log(\vec{\kappa})$ maximizes $\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$ with $c(x, y) = -\log(1 - \langle x | y \rangle)$.

Aurenhammer, Hoffman, Aronov '98

Concave maximization

Theorem: $\vec{\kappa}$ solves (FF) iff $\vec{\psi} = \log(\vec{\kappa})$ maximizes $\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$ with $c(x, y) = -\log(1 - \langle x | y \rangle)$.

Aurenhammer, Hoffman, Aronov '98

► A consequence of Kantorovich duality.

Supdifferentials. Let $\Phi : \mathbb{R}^d \to \mathbb{R}$ and $\psi \in \mathbb{R}^d$.

 $\blacktriangleright \ \partial^+ \Phi(\psi) = \{ v \in \mathbb{R}^d, \quad \Phi(\varphi) \le \Phi(\psi) + \langle \varphi - \psi | v \rangle \quad \forall \varphi \in \mathbb{R}^d \}.$

Supdifferentials. Let $\Phi : \mathbb{R}^d \to \mathbb{R}$ and $\psi \in \mathbb{R}^d$.

 $\blacktriangleright \ \partial^+ \Phi(\psi) = \{ v \in \mathbb{R}^d, \quad \Phi(\varphi) \le \Phi(\psi) + \langle \varphi - \psi | v \rangle \quad \forall \varphi \in \mathbb{R}^d \}.$

•
$$\Phi$$
 concave $\Leftrightarrow \forall \psi \in \mathbb{R}^d \ \partial^+ \Phi(\psi) \neq \emptyset$.

- ▶ In this case : $\partial^+ \Phi(\psi) = \{\nabla \Phi(\psi)\}$ a.e.
- ▶ ψ maximum of $\Phi \Leftrightarrow 0 \in \partial^+ \Phi(\psi)$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i}$$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i}$$

For all $\varphi \in \mathbb{R}^d$ $\min_{1 \le i \le N} [c(x, y_i) + \varphi_i] \le [c(x, y_{T_{\psi}(x)}) + \varphi_{T_{\psi}(x)}]$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$

 $T_{\psi}(x) = i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}(y_{i})$

For all $\varphi \in \mathbb{R}^d$ $\min_{1 \le i \le N} [c(x, y_i) + \varphi_i] \le [c(x, y_{T_{\psi}(x)}) + \varphi_{T_{\psi}(x)}]$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$

For all $\varphi \in \mathbb{R}^d$ $\min_{1 \le i \le N} [c(x, y_i) + \varphi_i] \le [c(x, y_{T_{\psi}(x)}) + \varphi_{T_{\psi}(x)}]$ $\le [c(x, y_{T_{\psi}(x)}) + \psi_{T_{\psi}(x)}] + \varphi_{T_{\psi}(x)} - \psi_{T_{\psi}(x)}$

$$\begin{split} \Phi(\psi) &:= \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i} \\ &= \int_{\mathcal{S}^{d-1}} \min_{1 \leq i \leq N} [c(x, y_{i}) + \psi_{i}] \,\mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i} \\ &T_{\psi}(x) = i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}(y_{i}) \\ \Phi(\varphi) - \Phi(\psi) \leq \int_{\mathcal{S}^{d-1}} \varphi_{T_{\psi}(x)} - \psi_{T_{\psi}(x)} \,\mathrm{d}\,\mu(x) - \sum_{i} (\varphi_{i} - \psi_{i})\nu_{i} \end{split}$$

11

$$\begin{split} \Phi(\psi) &:= \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] \, \mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i} \\ &= \int_{\mathcal{S}^{d-1}} \min_{1 \leq i \leq N} [c(x, y_{i}) + \psi_{i}] \, \mathrm{d}\,\mu(x) - \sum_{i} \psi_{i}\nu_{i} \\ &T_{\psi}(x) = i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}(y_{i}) \\ \Phi(\varphi) - \Phi(\psi) &\leq \int_{\mathcal{S}^{d-1}} \varphi_{T_{\psi}(x)} - \psi_{T_{\psi}(x)} \, \mathrm{d}\,\mu(x) - \sum_{i} (\varphi_{i} - \psi_{i})\nu_{i} \\ &\leq \sum_{1 \leq i \leq N} \left[\int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} \, \mathrm{d}\,\mu(x) - \nu_{i} \right] (\varphi_{i} - \psi_{i}) \\ &= \langle D\Phi(\psi) | \varphi - \psi \rangle \\ & \text{with } D\Phi(\psi) = \left(\mu(\operatorname{Vor}_{c}^{\psi}(y_{i})) - \nu_{i} \right) \end{split}$$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$

 $T_{\psi}(x) = i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}(y_{i})$

 $\Phi(\varphi) \leq \Phi(\psi) + \langle D\Phi(\psi) | \varphi - \psi \rangle$ with $D\Phi(\psi) = \left(\mu(\operatorname{Vor}_{c}^{\psi}(y_{i})) - \nu_{i} \right)$

$$\Phi(\psi) := \sum_{i} \int_{\operatorname{Vor}_{c}^{\psi}(y_{i})} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$
$$= \int_{\mathcal{S}^{d-1}} \min_{1 \le i \le N} [c(x, y_{i}) + \psi_{i}] d\mu(x) - \sum_{i} \psi_{i} \nu_{i}$$

 $T_{\psi}(x) = i \Leftrightarrow x \in \operatorname{Vor}_{c}^{\psi}(y_{i})$

$$\begin{split} \Phi(\varphi) &\leq \Phi(\psi) + \langle D\Phi(\psi) | \varphi - \psi \rangle \\ \text{with } D\Phi(\psi) &= \left(\mu(\operatorname{Vor}_{c}^{\psi}(y_{i})) - \nu_{i} \right) \end{split}$$

►
$$D\Phi(\psi) \in \partial^+ \Phi(\psi) \Rightarrow \Phi$$
 concave.

► $D\Phi(\psi)$ depends continuously on $\psi \Rightarrow \Phi$ of class C^1 .

► ψ maximum of $\Phi \Leftrightarrow \mu(\operatorname{Vor}_{c}^{\psi}(y_{i})) = \nu_{i} \forall i$

2. Implementation

Implementation of Convex Programming $(-\Phi)$

Quasi-Newton scheme:

Computation of descent direction / time step

LBFGS: low-storage version of the BFGS quasi-Newton scheme

Implementation of Convex Programming $(-\Phi)$

Quasi-Newton scheme:

Computation of descent direction / time step LBFGS: low-storage version of the BFGS quasi-Newton scheme

• Evaluation of Φ and $\nabla \Phi$:

```
\int_{\operatorname{Vor}_{c}^{\psi}(p)} \mathrm{d}\,\mu(x)\int_{\operatorname{Vor}_{c}^{\psi}(y)} c(x, y) \,\mathrm{d}\,\mu(x)
```

Main difficulty: computation of $Vor_c^{\psi}(y)$

Implementation of Convex Programming $(-\Phi)$

Quasi-Newton scheme:

Computation of descent direction / time step LBFGS: low-storage version of the BFGS quasi-Newton scheme

• Evaluation of Φ and $\nabla \Phi$:

```
\int_{\operatorname{Vor}_{c}^{\psi}(p)} \mathrm{d}\,\mu(x)\int_{\operatorname{Vor}_{c}^{\psi}(y)} c(x, y) \,\mathrm{d}\,\mu(x)
```

Main difficulty: computation of $Vor_c^{\psi}(y)$

Definition: Given $P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$ and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$ $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j \|x - p_j\|^2 + \omega_j\}$

Definition: Given
$$P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$$
 and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$
 $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j ||x - p_j||^2 + \omega_j\}$

▶ Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using CGAL (d = 2, 3)

Definition: Given
$$P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$$
 and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$
 $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j \|x - p_j\|^2 + \omega_j\}$

▶ Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using CGAL (d = 2, 3)

Lemma: With
$$\vec{\psi} = \log(\vec{\kappa})$$
, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_j}$,
 $\operatorname{Vor}_c^{\psi}(y_i) = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

Definition: Given
$$P = \{p_i\}_{1 \le i \le N} \subseteq \mathbb{R}^d$$
 and $(\omega_i)_{1 \le i \le N} \in \mathbb{R}^N$
 $\operatorname{Pow}_P^{\omega}(p_i) := \{x \in \mathbb{R}^d; i = \arg\min_j \|x - p_j\|^2 + \omega_j\}$

▶ Efficient computation of $(Pow_P^{\omega}(p_i))_i$ using CGAL (d = 2, 3)

Lemma: With
$$\vec{\psi} = \log(\vec{\kappa})$$
, $p_i := -\frac{y_j}{2\kappa_j}$ and $\omega_i := -\|\frac{y_j}{2\kappa_j}\|^2 - \frac{1}{\kappa_j}$,
 $\operatorname{Vor}_c^{\psi}(y_i) = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

Proof:
$$x \in \operatorname{Vor}_{c}^{\psi}(y_{i}) \subseteq S_{o}^{2}$$

 $\iff i \in \arg\min_{j} \frac{\kappa_{j}}{1 - \langle x | y_{j} \rangle}$
 $\iff i \in \arg\min_{j} \langle x | \frac{y_{j}}{\kappa_{j}} \rangle - \frac{1}{\kappa_{j}}$
 $\iff i \in \arg\min_{j} \|x + \frac{y_{j}}{2\kappa_{j}}\|^{2} - \frac{\|y_{j}\|^{2} - \frac{1}{\kappa_{j}}\|}{-p_{j}}$
 $\iff x \in \operatorname{Pow}_{P}^{\omega}(p_{i}) \cap S^{2}$

▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ **1.** Compute **implicitely** the intersection between every edge of $\operatorname{Pow}_P^{\omega}(p_i)$ and S^2 . Set vertices $V := \{\bullet\}$

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- ► lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell C_i = Pow^ω_P(p_i) ∩ S²
1. Compute implicitely the intersection between every edge of Pow^ω_P(p_i) and S². Set vertices V := {●}
2. Scan the edges of every 2-facet in clockwise order and construct oriented edges E between vertices.

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

1. Compute **implicitely** the intersection between every edge of $\operatorname{Pow}_P^{\omega}(p_i)$ and \mathcal{S}^2 . Set vertices $V := \{\bullet\}$

- **2.** Scan the edges of every 2-facet in clockwise order and construct oriented edges E between vertices.
- **3.** Extract oriented cycles from G = (V, E).

- ▶ in general, the cells $C_i := \text{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

1. Compute **implicitely** the intersection between every edge of $\operatorname{Pow}_P^{\omega}(p_i)$ and \mathcal{S}^2 . Set vertices $V := \{\bullet\}$

- **2.** Scan the edges of every 2-facet in clockwise order and construct oriented edges E between vertices.
- **3.** Extract oriented cycles from G = (V, E).
- 4. Handle circular arcs without vertex separately.

- ▶ in general, the cells $C_i := \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$ can be disconnected, have holes, etc.
- boundary representation: a family of oriented cycles composed of circular arcs per cell.
- lower complexity bound: $\Omega(N \log N)$.

Algorithm: for each cell $C_i = \operatorname{Pow}_P^{\omega}(p_i) \cap S^2$

1. Compute **implicitely** the intersection between every edge of $\operatorname{Pow}_P^{\omega}(p_i)$ and \mathcal{S}^2 . Set vertices $V := \{\bullet\}$

- **2.** Scan the edges of every 2-facet in clockwise order and construct oriented edges E between vertices.
- **3.** Extract oriented cycles from G = (V, E).
- 4. Handle circular arcs without vertex separately.

Complexity: $O(N \log N + C)$ where C = complexity of the Power diagram.

Numerical results (1)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu =$ uniform measure on half-sphere S_+^2 N = 1000

drawing of $(\operatorname{Vor}_{c}^{\psi}(y_{i}))$ (on \mathcal{S}_{+}^{2}) for $\psi = 0$

Numerical results (1)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu =$ uniform measure on half-sphere S_+^2 N = 1000

drawing of $(\operatorname{Vor}_{c}^{\psi}(y_{i}))$ (on \mathcal{S}_{+}^{2}) for $\psi_{\operatorname{sol}}$

Numerical results (1)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu =$ uniform measure on half-sphere S_+^2 N = 1000

rendering of the image reflected at infinity (using LuxRender)

Numerical results (2)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu = \text{uniform measure on half-sphere } S^2_+$ N = 15000

drawing of $(\operatorname{Vor}_{c}^{\psi}(y_{i}))$ (on \mathcal{S}_{+}^{2}) for $\psi_{\operatorname{sol}}$

Numerical results (2)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu = \text{uniform measure on half-sphere } S^2_+$ N = 15000

solution to the far-field reflector problem: $R(\kappa_{
m sol})$

Numerical results (2)

 $u = \sum_{i=1}^{N} \nu_i \delta_{x_i}$ obtained by discretizing a picture of G. Monge. $\mu =$ uniform measure on half-sphere S_+^2 N = 15000

rendering of the image reflected at infinity (using LuxRender)

3. Complexity of paraboloid intersection

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \le i \le N}$ is O(N).

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Complexity: E + F + V, where

$$E = \#$$
 edges
 $V = \#$ vertices

 $F={\rm total}~\#~{\rm of}~{\rm connected}~{\rm components}$

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

Lemma: The projection of $\partial P_i \cap P_j$ onto the plane $\{y_i^{\perp}\}$ is a disc.

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

Lemma: The projection of $\partial P_i \cap P_j$ onto the plane $\{y_i^{\perp}\}$ is a disc.

 \implies the projection of $R(\vec{\kappa}) \cap \partial P_i$ on $\{y_i\}^{\perp}$ is convex

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

Lemma: The projection of $\partial P_i \cap P_j$ onto the plane $\{y_i^{\perp}\}$ is a disc.

 \implies the projection of $R(\vec{\kappa}) \cap \partial P_i$ on $\{y_i\}^{\perp}$ is convex $\implies \operatorname{PI}_i(\vec{\kappa})$ is connected.

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

• Every vertex has 3 edges $\Rightarrow 3V \leq 2E$.

Theorem: For N paraboloids, the complexity of the diagram $(\operatorname{PI}_i(\vec{\kappa}))_{1 \leq i \leq N}$ is O(N).

Proof:

- Every vertex has 3 edges $\Rightarrow 3V \leq 2E$.
- Euler's formula V E + F = 2 implies $V \le 2F - 4$ and $E \le 3F - 6$.

4. Other types of reflectors

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

$$R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^{N} P_i(\kappa_i) \right)$$

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

$$R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^{N} P_i(\kappa_i) \right)$$

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

$$R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^{N} P_i(\kappa_i) \right)$$
$$PU_i(\vec{\kappa}) = \pi_{\mathcal{S}^2_o}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$$

Punctual light at origin o, μ measure on S_o^2 Prescribed far-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on S_∞^2

 $P_i(\kappa_i) = \text{convex hull of paraboloid with focal } o$, direction y_i and focal distance κ_i

$$R(\vec{\kappa}) = \partial \left(\bigcup_{i=1}^{N} P_i(\kappa_i) \right)$$
$$PU_i(\vec{\kappa}) = \pi_{\mathcal{S}_o^2}(R(\vec{\kappa}) \cap \partial P_i(\kappa_i))$$

Far-field reflector antenna problem:

Problem (FF'): Find $\kappa_1, \ldots, \kappa_N$ such that for every *i*, $\mu(\text{PU}_i(\vec{\kappa})) = \nu_i$.

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and eccentricity e_i

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and eccentricity e_i

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and eccentricity e_i

$$R(\vec{e}) = \partial \left(\bigcap_{i=1}^{N} E_i(e_i) \right)$$

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and eccentricity e_i

 $R(\vec{e}) = \partial \left(\bigcap_{i=1}^{N} E_i(e_i) \right)$ EI_i(\vec{e}) = $\pi_{\mathcal{S}^2_o}(R(\vec{e}) \cap \partial E_i(\kappa_i))$

Punctual light at origin o, μ measure on S_o^2 Prescribed near-field: $\nu = \sum_i \nu_i \delta_{y_i}$ on \mathbb{R}^3

 $E_i(e_i) = \text{convex hull of ellipsoid with focals } o$ and y_i , and eccentricity e_i

$$R(\vec{e}) = \partial \left(\bigcap_{i=1}^{N} E_i(e_i) \right)$$
$$EI_i(\vec{e}) = \pi_{\mathcal{S}_o^2} \left(R(\vec{e}) \cap \partial E_i(\kappa_i) \right)$$

Near-field reflector antenna problem:

Oliker '04

Problem (NF): Find e_1, \ldots, e_N such that for every i, $\mu(\text{EI}_i(\vec{e})) = \nu_i$. amount of light reflected to the point y_i .

Complexity of a single iteration

Complexity of union/intersection of solid confocal quadric of revolutions in \mathbb{R}^3 :

Paraboloid intersection Paraboloid union Ellipsoid intersection Ellipsoid union

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.
Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Future work:

- Near field reflector problem
- complexity of paraboloid union ?
- quantitative stability results ?

Conclusion

A simple quasi-Newton scheme can be used to solve rather large (15k points) geometric instances of optimal transport.

Power diagrams can be used to compute efficiently the c-Voronoi cells

Future work:

- Near field reflector problem
- complexity of paraboloid union ?
- quantitative stability results ?

