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Punctual light at origin o, ;+ measure on S2
Prescribed far-field: v on 8%

Goal: Find a surface R which sends (S2, i) to
(Se0, ) under reflection by Snell’s law.

» R is parameterized over S2

» Snell's law
Tr:x €8¢ —y=x—2xn)n

Brenier formulation 1ip =1v Monge-Ampere equation
I.e. for every borelian B If pu(z) = f(z)dz and v(y) = g(y)dy
W(T-Y(B)) = v(B) g(T'(x)) det(DT(x)) = f(x)

» highly non linear

» Existence Caffarelli & Oliker 94

» RegUIanty, uniqueneSS Wang 96, Guan & Wang 98
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Reflector Problem : semi-discrete case

Punctual light at origin o, ;1 measure on S2

(ks) Prescribed far-field: v =" v;0,, on SZ

P;(k;) = solid paraboloid of revolution with focal o,

direction y; and focal distance k;

R(R) =0 (N, P;(ki))

s2(R(R) N OP;(k;))

o

Decomposition of S%: PI;(R) =7
= directions that are reflected towards y;.

Problem (FF): Find k1,...,xx such that for every i, u(PIL;(R)) = v;.
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» An optimal transport problem  wang 04
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Semi-discrete optimal transport

1+ = probability measure on X v = prob. measure on finite Y
with density, X = manifold = D _yey VyOy
- gy
y O
O
O
O
Transport map: 7': X — Y s.t. Cost function: c: X xY —- R
vy Y, wT({y}) = v, Co(T) = [y olx, T(x)) d p(a)
in short: Tiyuu = v. = fT_l(y) c(x,y)d u(x)

Monge problem: 7.(u,v) := min{C.(T); Tupu = v}
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Back to the Reflector Antenna Problem

Lemma: With ¢(z,y) = —log(1 — (z|y)), and ¥; := log(k;),
PL(R) = {z € S5, c(x,y;) +¢; < c(x,y;) +v; Vit

Y1
Optimal transport formulation
£ > TV (x) = argmingey c(z,y) + ¥ (y)
0
Y3

The map T is a c-optimal transport between y and Tép#,u.

Problem (FF): Find ¢1,..., ¢y such that T,y = v.
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Cafarelli-Kochengin-Oliker’99:
coordinate-wise ascent, with /minimum increment

Initialization: Fix yo € Y, let 6 = &/N and compute ¥ s.t.
Vy e Y\ {yo}, n(Vorf(p)) <wy +6

While 3y # yo such that p(Vor? (y)) < v, — 4, do:
decrease 1(y) s.t. u(Vor¥(y)) € [vy, vy + 9],

Result: ¢ s.t. for all y, [u(Vor? (y)) — vy| < e.

» Complexity of SP: N? /e steps
» Generalization of Oliker—Prussner in R? with c(z,y) = ||z — y||?

» Generalization: MTW™ costs kitagawa '12
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Concave maximization

Theorem: & solves (FF) iff ¢ = log(R) maximizes
q)(¢) = Zz f\/'oréb(yi)[c(x7 ?/z) T %] d,u(x) — Zz ;v
with ¢(z,y) = —log(1 — (z[y)).

Aurenhammer, Hoffman, Aronov '98

» A consequence of Kantorovich duality.
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Proof of concave maximization thm

P(y) = Zz fVoer(yi)[C(aj? y;) + il d p(x) — ZZ (U2
= [oa s mini<i<ne(x, y;) + 5] dp(x) = >, vy
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Proof of concave maximization thm

D () = Z@ varg@i)[C(I‘, yi) + il dp(r) — ZZ (UR%
= Jga—s miny<i<n[e(@, ys) + ] d p(x) — 0, v

Ty(xz) =i < 2 € Vor¥ (y;)

C(p) < @) + (DO(Y)|p — ) /
with DO () = (M(Vorf(y,,;)) — V,,;) \
(DR

> DP(y) € 0T P(1)) = P concave.
» D®(1)) depends continuously on 1) = ® of class C'!.

» ) maximum of ® < p(Vor?(v;)) = v; Vi
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Definition: Given P = {pi}lgiSN C Rd and (wi)lgiSN ~ RN

Powp(p;) :={x € RY: i = arg min; ||z _ij2 + w; }

» Efficient computation of (Pow:(p;)); using CGAL (d = 2, 3)

c N/ o - Y5 . Yji |2 1
Lemma: With ¢ = log(R), p; := —5= and w; := HQljj < — ot
Vorg (y;) = Powp(pi) N S?
Proof: = € Vor?(y;) C S?
< 1 € argmin; 1_<'¥|yj>
1 € argminﬂa:]ié) F}j
< 1 € argmin; H:E + 52—33 !2 HQyIjj H2 — %
—Dj W;
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Computation of the generalized Voronoi cells

» in general, the cells C; := Pow%(p;) N 8% can
be disconnected, have holes, etc.

» boundary representation: a family of oriented
cycles composed of circular arcs per cell.

» lower complexity bound: Q(N log N).

Algorithm: for each cell C; = Pow%(p;) N S?
1. Compute implicitely the intersection between

every edge of Pow%(p;) and S2. Set vertices |/ := {eo}

2. Scan the edges of every 2-facet in clockwise order
and construct oriented edges I between vertices.

3. Extract oriented cycles from G = (V, E).
4. Handle circular arcs without vertex separately.

Complexity: O(N log N 4+ C') where C' = complexity of the Power diagram.
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Numerical results (1)

v = Zf;l V;0,, obtained by discretizing a picture of G. Monge.

1 = uniform measure on half-sphere S7 N = 1000

drawing of (Vor¥(y;)) (on S3) for ¢ = 0
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Numerical results (2)

v = Z,fil V;0,, obtained by discretizing a picture of G. Monge.
1 = uniform measure on half-sphere S7 N = 15000

drawing of (Vor¥(v;)) (on S3) for 1so
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Numerical results (2)

v = Z,fil V;0,, obtained by discretizing a picture of G. Monge.
1 = uniform measure on half-sphere S7 N = 15000

solution to the far-field reflector problem: R(kso1)
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Numerical results (2

v = Zfll V;0,, obtained by discretizing a picture of G. Monge.
1 = uniform measure on half-sphere S7 N = 15000
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3. Complexity of paraboloid intersection
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Complexity of the paraboloid intersection (Pl)

Theorem: For N paraboloids, the complexity of the diagram
(PL(R))1<i<w is O(N).

Complexity: £/ + F' + V', where

}“Q\ E = # edges
' V' = # vertices
F' = total # of connected components
'
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(PL(R))1<i<w is O(N).

Proof: Lemma: The projection of 9P;N
P; onto the plane {y;"} is a disc.

{yi}J_ Pj

— the projection of R(RK) N OPF; on {y;}+ is convex

—> PI;(K) is connected.
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Complexity of the paraboloid intersection (Pl)

Theorem: For N paraboloids, the complexity of the diagram
(PL(R))1<i<n is O(N).
Proof:

» <N

» Every vertex has 3 edges = 3V < 2F.
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Complexity of the paraboloid intersection (Pl)

Theorem: For N paraboloids, the complexity of the diagram
(PL(R))1<i<n is O(N).
Proof:

» <N

» Every vertex has 3 edges = 3V < 2F.

» Euler's formula V. — E + F' = 2 implies
V <2F —4and £ < 3F — 6.



4. Other types of reflectors
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Other type : paraboloid union (PU

Y1
Punctual light at origin o, 1t measure on S?

Prescribed far-field: v =>".1;4,, on S,

/2 P;(k;) = convex hull of paraboloid with focal o,

direction y; and focal distance k;

Y3 R(/ZJ)) — 8 (Uffilpz(liz))
R(R) N OPs(rs3) PU;(K) = ms2(R(K) N OF;(k;))

Far-field reflector antenna problem:

Problem (FF’): Find k1, ...,xx~ such that for every ¢, u(PU;(K)) = vs.

21



Near-Field Reflector Antenna Problem

Y1 . .
P Punctual light at origin o, ;1 measure on S?

Prescribed near-field: v =3 v;0,. on R?

Y3



22

Near-Field Reflector Antenna Problem

Y1 . .
P Punctual light at origin o, ;1 measure on S?

Prescribed near-field: v =3 v;0,. on R?

FE;(e;) = convex hull of ellipsoid with focals o
and y;, and eccentricity e;

Y3



22

Near-Field Reflector Antenna Problem

Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v =3 v;0,. on R?

FE;(e;) = convex hull of ellipsoid with focals o
and y;, and eccentricity ¢;

Y3



22

Near-Field Reflector Antenna Problem

Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v =3 v;0,. on R?

FE;(e;) = convex hull of ellipsoid with focals o
and y;, and eccentricity ¢;

Y3



22

Near-Field Reflector Antenna Problem

Y1
P Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v =3 v;0,. on R?
FE;(e;) = convex hull of ellipsoid with focals o
0 2 and y;, and eccentricity e;
El;(€) = ms2(R(€) N OE;(ki))

Y3



Near-Field Reflector Antenna Problem

Y1
P Punctual light at origin o, ;1 measure on S?
Prescribed near-field: v =3 v;0,. on R?
FE;(e;) = convex hull of ellipsoid with focals o
0 2 and y;, and eccentricity ¢;
El;(€) = ms2(R(€) N OE;(ki))
Y3

Near-field reflector antenna problem: Oliker ‘04

Problem (NF): Find eq,...,en such that for every ¢, u(EI;(€)) = v; .

22



Complexity of a single iteration

Complexity of union/intersection of solid

confocal quadric of revolutions in R?:

Paraboloid intersection
Paraboloid union

Ellipsoid intersection
Ellipsoid union
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> |
|II O
| Q(n?) for ellipsoids

Combinatorial complexity

O(n)
(Q(n)
©(n?)
©(n?)
f

# faces + points + edges

Computational c.
O(nlogn)
O(n?)

O(n?)
O(n?)
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Conclusion

A simple quasi-Newton scheme can be used to solve rather large
(15k points) geometric instances of optimal transport.
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Thank youl



