Numerical optimization of Dirichlet-Laplace eigenvalues on domains in surfaces

Régis Straubhaar
INRIA Saclay - Île-de-France

CIRM - 12/16/2013

Geometric problem

Optimization problem

Numerical processing

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Consider the problem:
$(\mathcal{P})\left\{\begin{array}{l}\text { find a non-zero map } u: \Omega \rightarrow \mathbb{R} \text { and a scalar } \lambda \in \mathbb{R} \\ \text { (both depending on } \Omega \text {) such that } \\ -\Delta u=\lambda u \text { in } \Omega, \\ u=0 \quad \text { on } \partial \Omega .\end{array}\right.$

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Consider the problem:

$$
(\mathcal{P})\left\{\begin{array}{l}
\text { find a non-zero map } u: \Omega \rightarrow \mathbb{R} \text { and a scalar } \lambda \in \mathbb{R} \\
\text { (both depending on } \Omega \text {) such that } \\
-\Delta u=\lambda u \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Theoretical Question : Existence of a solution (λ, u) ?

Geometric problem

Let $\Omega \subset \mathbb{R}^{2}$ be a regular, bounded domain.

Consider the problem:

$$
(\mathcal{P})\left\{\begin{array}{l}
\text { find a non-zero map } u: \Omega \rightarrow \mathbb{R} \text { and a scalar } \lambda \in \mathbb{R} \\
\text { (both depending on } \Omega \text {) such that } \\
-\Delta u=\lambda u \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Theoretical Question : Existence of a solution (λ, u) ? Spectral theorem: Yes!

There exist a sequence of real positive eigenvalues

$$
0<\lambda_{1} \leq \lambda_{2} \cdots \nearrow \infty,
$$

and a sequence of associated eigenfunctions $\left(u_{k}\right)_{k \geq 1}$ such that

$$
-\Delta u_{k}=\lambda_{k} u_{k}, \text { for all } k \geq 1
$$

There exist a sequence of real positive eigenvalues

$$
0<\lambda_{1} \leq \lambda_{2} \cdots \nearrow \infty,
$$

and a sequence of associated eigenfunctions $\left(u_{k}\right)_{k \geq 1}$ such that

$$
-\Delta u_{k}=\lambda_{k} u_{k}, \text { for all } k \geq 1
$$

Moreover, the eigenfunctions $\left(u_{n}\right)$ define a Hilbert basis of $H_{0}^{1}(\Omega)$.

Motivations

- The Laplace-spectrum encodes informations about the underlying domain;
- Optimization w.r.t. the domain to understand the behaviour of the spectrum.

Theoretically known examples:

Theoretically known examples:

Example computed numerically

$\lambda_{1, h}(\Omega) \simeq 21.026$

Theoretically known examples:

Example computed numerically

$\lambda_{1, h}(\Omega) \simeq 21.026$

Optimization problem

Question: What bounded domain $\Omega \subset \mathbb{R}^{2}$ minimizes $\lambda_{k, \Omega}$?

Optimization problem

Question: What bounded domain $\Omega \subset \mathbb{R}^{2}$ minimizes $\lambda_{k, \Omega}$?
\rightsquigarrow That is not a good question!

(the larger Ω is, the smaller the eigenvalue $\lambda_{k, \Omega}$ is)

Optimization problem

Question: What bounded domain of volume $1 \Omega \subset \mathbb{R}^{2}$ minimizes $\lambda_{k, \Omega}$?

Optimization problem

Question: What bounded domain of volume $1 \Omega \subset \mathbb{R}^{2}$ minimizes $\lambda_{k, \Omega}$?

Or equivalently,

$$
\min _{\substack{\text { vol }(\Omega)=1, \Omega \text { bounded }}} \lambda_{k, \Omega} \Leftrightarrow \min _{\Omega \text { bounded }} \operatorname{vol}(\Omega) \lambda_{k, \Omega}
$$

Few known results:

Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

Few known results:
Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

B

Theorem (Krahn-Szegö, 1926)
Let B_{2} be the union of two identical balls, $\operatorname{vol}\left(B_{2}\right)=1$. Then,

$$
\lambda_{2, B_{2}}=\min \left\{\lambda_{2, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\} .
$$

Few known results:
Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

$$
\lambda_{1, B}=\min \left\{\lambda_{1, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\}
$$

Theorem (Krahn-Szegö, 1926)
Let B_{2} be the union of two identical balls, $\operatorname{vol}\left(B_{2}\right)=1$. Then,

$$
\lambda_{2, B_{2}}=\min \left\{\lambda_{2, \Omega} \mid \Omega \subset \mathbb{R}^{2}, \operatorname{vol}(\Omega)=1\right\} .
$$

- These theorems also hold in $\mathbb{R}^{n}, n \geq 3$;

Another result:

Theorem (Bucur 2012 \& Mazzoleni, Pratelli 2013)
There exists a minimizer for $\lambda_{k, \Omega}, k \geq 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

Another result:

Theorem (Bucur 2012 \& Mazzoleni, Pratelli 2013)
There exists a minimizer for $\lambda_{k, \Omega}, k \geq 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

However, it does not provide the shape of the minimizing domain!

Open problem
For $k \geq 3$, what is the bounded domain of volume 1 in \mathbb{R}^{2} which minimizes $\lambda_{k, \Omega}$?

Open problem:

Generally, for a given bounded domain Ω, it is quite impossible to find analytically the eigenvalues $\lambda_{k, \Omega}$.

Open problem:

Generally, for a given bounded domain Ω, it is quite impossible to find analytically the eigenvalues $\lambda_{k, \Omega}$.
\rightsquigarrow numerics!

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$
(\mathcal{P})\left\{\begin{aligned}
\text { find } u: \Omega & \rightarrow \mathbb{R} \text { and } \lambda \in \mathbb{R} \text { such that } \\
-\Delta u & =\lambda u \text { in } \Omega, \\
u & =0 \quad \text { on } \partial \Omega .
\end{aligned}\right.
$$

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$
(\mathcal{W P})\left\{\begin{array}{l}
\text { find } u \in H_{0}^{1}(\Omega) \text { and } \lambda \in \mathbb{R} \text { such that } \\
\int_{\Omega}(\nabla u \mid \nabla v)=\lambda \int_{\Omega} u v, \quad \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$
(\mathcal{W P})\left\{\begin{array}{l}
\text { find } u \in H_{0}^{1}(\Omega) \text { and } \lambda \in \mathbb{R} \text { such that } \\
\int_{\Omega}(\nabla u \mid \nabla v)=\lambda \int_{\Omega} u v, \quad \forall v \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

$\rightsquigarrow A$ discrete framework is required.

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Instead of $H_{0}^{1}(\Omega)$ in $(\mathcal{W P})$, consider the finite dimensional space

$$
V_{h}:=\left\{\varphi \in \mathcal{C}^{0}(\bar{\Omega}) \mid \varphi_{\mid \partial \Omega}=0, \varphi_{\mid K} \text { linear } \forall K \in \mathcal{M}\right\} ;
$$

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_{1} \rightsquigarrow$ we get a mesh \mathcal{M}_{h} with N nodes inside Ω;

Instead of $H_{0}^{1}(\Omega)$ in $(\mathcal{W P})$, consider the finite dimensional space

$$
V_{h}:=\left\{\varphi \in \mathcal{C}^{0}(\bar{\Omega}) \mid \varphi_{\mid \partial \Omega}=0, \varphi_{\mid K} \text { linear } \forall K \in \mathcal{M}\right\}
$$

Basis $\left\{\varphi_{h, i}\right\}_{i=1}^{N}$ of V_{h} :

$$
\varphi_{h, i}\left(P_{j}\right)=\delta_{i j}
$$

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \quad \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N .
\end{array}\right.
$$

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \quad \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N .
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:

$$
\sum_{j=1}^{N} \underbrace{\int_{\Omega}\left(\nabla \varphi_{h, j} \mid \nabla \varphi_{h, i}\right)}_{S_{i, j}} u_{j}=\lambda \sum_{j=1}^{N} \underbrace{\int_{\Omega} \varphi_{h, j} \varphi_{h, i}}_{M_{i, j}} u_{j}, \quad \forall i=1, \ldots, N .
$$

$$
\left(\mathcal{W P}{ }_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \quad \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N .
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:

$$
\sum_{j=1}^{N} \underbrace{\int_{\Omega}\left(\nabla \varphi_{h, j} \mid \nabla \varphi_{h, i}\right)}_{S_{i, j}} u_{j}=\lambda \sum_{j=1}^{N} \underbrace{\int_{\Omega} \varphi_{h, j} \varphi_{h, i} u_{j}}_{M_{i, j}}, \quad \forall i=1, \ldots, N .
$$

$\rightsquigarrow\left(\mathcal{W} \mathcal{P}_{h}\right)$: find $\vec{u} \in \mathbb{R}^{N} \backslash\{0\}$, and $\lambda>0$ such that $S \vec{u}=\lambda M \vec{u}$.

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega}\left(\nabla u_{h} \mid \nabla \varphi_{h, i}\right)=\lambda \int_{\Omega} u_{h} \varphi_{h, i}, \quad \forall i=1, \ldots, N
\end{array}\right.
$$

Pluging $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{h, j} \in V_{h}$ into $\left(\mathcal{W} \mathcal{P}_{h}\right)$:

$$
\sum_{j=1}^{N} \underbrace{\int_{\Omega}\left(\nabla \varphi_{h, j} \mid \nabla \varphi_{h, i}\right)}_{S_{i, j}} u_{j}=\lambda \sum_{j=1}^{N} \underbrace{\int_{\Omega} \varphi_{h, j} \varphi_{h, i} u_{j}}_{M_{i, j}}, \quad \forall i=1, \ldots, N .
$$

$\rightsquigarrow\left(\mathcal{W} \mathcal{P}_{h}\right)$: find $\vec{u} \in \mathbb{R}^{N} \backslash\{0\}$, and $\lambda>0$ such that $S \vec{u}=\lambda M \vec{u}$.
\rightsquigarrow Lanczos algorithm to solve $\left(\mathcal{W P}_{h}\right)$.

Shape optimization

The idea is to use a descent algorithm to minimize the cost functional $J(\Omega)=\lambda_{k}(\Omega)$ vol (Ω).

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω.

Shape optimization

The idea is to use a descent algorithm to minimize the cost functional $J(\Omega)=\lambda_{k}(\Omega) \operatorname{vol}(\Omega)$.

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω.

Given an initial domain Ω, we allow deformations of the form
$\Omega_{\theta}=(\mathrm{id}+\theta)(\Omega), \theta \in W^{1, \infty}(\Omega)$.

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain,

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it,

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions,

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary,

Now, we can compute the derivative with respect to the domain of J, that is the Fréchet derivative of $\theta \mapsto J\left(\Omega_{\theta}\right)$.

$$
J^{\prime}\left(\Omega_{0}\right)(\theta)=\int_{\partial \Omega_{0}}\left(\lambda_{k}\left(\Omega_{0}\right)-\operatorname{vol}\left(\Omega_{0}\right)\left(\frac{\partial u_{k}}{\partial \vec{n}}\right)^{2}\right)(\theta \mid \vec{n}) \mathrm{d} \sigma
$$

Then P_{i} is moved onto

$$
P_{i}^{\prime}:=P_{i}-d_{i} \vec{n}, \text { with } d_{i}=J^{\prime}\left(\Omega_{0}\right)\left(\theta_{i}\right) .
$$

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary, and so on...

15 first candidates to be minimizing domains of volume 1 in \mathbb{R}^{2}.
R

Previously found by Oudet ('04, partly) and Antunes-Freitas ('12)

Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

Mesh $\alpha(U)$ in order to consider manifold non embeddable in \mathbb{R}^{3}.
\rightsquigarrow use the expression of the Laplacian in local coordinates:

$$
\Delta f=\frac{1}{\sqrt{\operatorname{det}(G)}} \sum_{j, k=1}^{2} \partial x_{j}\left(G^{j k} \sqrt{\operatorname{det}(G)} \partial x_{k} f\right)
$$

Generalization to surfaces

It implies several modifications. For instance,

- for the computation:

$$
\left(\mathcal{W} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega} \nabla u_{h}^{t} G^{-1} \nabla \varphi_{h, i} \sqrt{\operatorname{det} G}=\lambda \int_{\Omega} u_{h} \varphi_{h, i} \sqrt{\operatorname{det} G}, \\
\text { for all } i=1, \ldots, N .
\end{array}\right.
$$

Generalization to surfaces

It implies several modifications. For instance,

- for the computation:

$$
\left(\mathcal{W P} \mathcal{P}_{h}\right)\left\{\begin{array}{l}
\text { find } u_{h} \in V_{h}, u_{h} \not \equiv 0, \text { and } \lambda>0 \text { such that } \\
\int_{\Omega} \nabla u_{h}^{t} G^{-1} \nabla \varphi_{h, i} \sqrt{\operatorname{det} G}=\lambda \int_{\Omega} u_{h} \varphi_{h, i} \sqrt{\operatorname{det} G}, \\
\text { for all } i=1, \ldots, N .
\end{array}\right.
$$

- for the optimization:

There is no homothety any more! The volume constraint has to be taken into consideration. \rightsquigarrow Lagrange multiplier.

We look for a saddle point of the functional

$$
J(\mu, \Omega)=\lambda_{k}(\Omega)+\mu\left(\operatorname{vol}(\Omega)-V_{0}\right),
$$

where V_{0} is the volume of the initial domain Ω_{0}.

We look for a saddle point of the functional

$$
J(\mu, \Omega)=\lambda_{k}(\Omega)+\mu\left(\operatorname{vol}(\Omega)-V_{0}\right)
$$

where V_{0} is the volume of the initial domain Ω_{0}.
\rightsquigarrow We get a similar formula for the shape optimization.

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature $=+1$);

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature $=+1$);
- in the Poincaré disc \mathbb{D}^{2} (curvature $=-1$);

The algorithm gives the same results in $\mathbb{R}^{2} . \checkmark$
For small domains in surfaces, the results are similar

- in the sphere \mathbb{S}^{2} (curvature $=+1$);
- in the Poincaré disc \mathbb{D}^{2} (curvature $=-1$);
- in a hyperboloid H (curvature between 0 and 1)

$$
H=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0, x^{2}+y^{2}-z^{2}=-1\right\} .
$$

Optimal domains $\Omega_{k}^{*} \subset \mathbb{S}^{2}$ (volume 0.1) minimizing each of the first k eigenvalues.

Plot of the optimizers for $\lambda_{10}\left(\Omega_{10, \mathbb{S}^{2}}^{*}\right)$ and $\operatorname{vol}\left(\Omega_{10, \mathbb{S}^{2}}^{*}\right)=0.1,0.2$, $\ldots, 0.9,1$ and 2.

Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of volume 0.01 in $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{D}^{2}$ and the hyperboloid H.

Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of volume 0.01 in $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{D}^{2}$ and the hyperboloid H.
The optimizers are balls B centred at a point with maximizing the curvature.

Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of volume 0.01 in $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{D}^{2}$ and the hyperboloid H.
The optimizers are balls B centred at a point with maximizing the curvature.

$$
" \kappa\left(\mathbb{D}^{2}\right)<\kappa\left(\mathbb{R}^{2}\right)<\kappa(H) \leq \kappa\left(\mathbb{S}^{2}\right) ",
$$

Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of volume 0.01 in $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{D}^{2}$ and the hyperboloid H.
The optimizers are balls B centred at a point with maximizing the curvature.

$$
" \kappa\left(\mathbb{D}^{2}\right)<\kappa\left(\mathbb{R}^{2}\right)<\kappa(H) \leq \kappa\left(\mathbb{S}^{2}\right) "
$$

$$
\begin{array}{ccccc}
\lambda_{1}\left(B_{\mathbb{S}^{2}, 0.01}\right) & <\lambda_{1}\left(B_{\mathbb{R}^{2}, 0.01}\right) & <\lambda_{1}\left(B_{\mathbb{D}^{2}, 0.01}\right) & <\lambda_{1}\left(B_{H, 0.01}\right) \\
12 & 12 & 12 & \mid 2 \\
1816.57 & 1816.80 & 1817.67 & 1819.10
\end{array}
$$

Thank you for your attention!

