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
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Geometric problem

Let Ω ⊂ R
2 be a regular, bounded domain.

Consider the problem:

(P)







find a non-zero map u : Ω → R and a scalarλ ∈ R

(both depending on Ω) such that
−∆u = λu in Ω,

u = 0 on ∂Ω.

Theoretical Question : Existence of a solution (λ, u)?
Spectral theorem: Yes!
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There exist a sequence of real positive eigenvalues

0 < λ1 ≤ λ2 · · · ր ∞,

and a sequence of associated eigenfunctions (uk)k≥1 such that

−∆uk = λkuk , for all k ≥ 1.
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There exist a sequence of real positive eigenvalues

0 < λ1 ≤ λ2 · · · ր ∞,

and a sequence of associated eigenfunctions (uk)k≥1 such that

−∆uk = λkuk , for all k ≥ 1.

Moreover, the eigenfunctions (un) define a Hilbert basis of
H1
0 (Ω).
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Motivations

◮ The Laplace-spectrum encodes informations about the
underlying domain;

◮ Optimization w.r.t. the domain to understand the behaviour
of the spectrum.
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Theoretically known examples:

λ1,Disc1 ≃ 18.168 λ1,Square1
≃ 19.739
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Theoretically known examples:

λ1,Disc1 ≃ 18.168 λ1,Square1
≃ 19.739

Example computed numerically

λ1,h(Ω) ≃ 21.026
λ1,h(

√
2Ω) ≃ 10.513
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Optimization problem

Question : What bounded domain Ω ⊂ R
2 minimizes λk,Ω?
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Optimization problem

Question : What bounded domain Ω ⊂ R
2 minimizes λk,Ω?

 That is not a good question !

Ω Hr (Ω)

λk,Hr (Ω) =
1

r2
λk,Ω

(the larger Ω is, the smaller the eigenvalue λk,Ω is)
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Optimization problem

Question : What bounded domain of volume 1 Ω ⊂ R
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Optimization problem

Question : What bounded domain of volume 1 Ω ⊂ R
2 minimizes

λk,Ω?

Or equivalently,

min
vol(Ω)=1,
Ω bounded

λk,Ω ⇔ min
Ω bounded

vol(Ω)λk,Ω
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Few known results:

Theorem (Faber-Krahn, 1923)

Let B be the ball of volume 1. Then,

λ1,B = min
{
λ1,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B
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B

Theorem (Krahn-Szegö, 1926)

Let B2 be the union of two identical balls, vol(B2) = 1. Then,

λ2,B2
= min

{
λ2,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B2
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Few known results:

Theorem (Faber-Krahn, 1923)

Let B be the ball of volume 1. Then,

λ1,B = min
{
λ1,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B

Theorem (Krahn-Szegö, 1926)

Let B2 be the union of two identical balls, vol(B2) = 1. Then,

λ2,B2
= min

{
λ2,Ω

∣
∣Ω ⊂ R

2, vol(Ω) = 1
}
.

B2

◮ These theorems also hold in R
n, n ≥ 3;
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Another result:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for λk,Ω, k ≥ 3, among all quasi-open

sets Ω of given volume. Moreover, it is bounded and has finite

perimeter.
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Another result:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for λk,Ω, k ≥ 3, among all quasi-open

sets Ω of given volume. Moreover, it is bounded and has finite

perimeter.

However, it does not provide the shape of the minimizing
domain!

Open problem

For k ≥ 3, what is the bounded domain of volume 1 in R
2 which

minimizes λk,Ω?
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Open problem:

Generally, for a given bounded domain Ω, it is quite impossible
to find analytically the eigenvalues λk,Ω.
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Open problem:

Generally, for a given bounded domain Ω, it is quite impossible
to find analytically the eigenvalues λk,Ω.

 numerics !
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Numerical processing

Weak formulation of problem (P):

(P)







find u : Ω → R and λ ∈ R such that
−∆u = λu in Ω,

u = 0 on ∂Ω.
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Numerical processing

Weak formulation of problem (P):

(WP)







find u ∈ H1
0 (Ω) and λ ∈ R such that

∫

Ω

(∇u|∇v) = λ

∫

Ω

uv , ∀v ∈ H1
0 (Ω).
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Numerical processing

Weak formulation of problem (P):

(WP)







find u ∈ H1
0 (Ω) and λ ∈ R such that

∫

Ω

(∇u|∇v) = λ

∫

Ω

uv , ∀v ∈ H1
0 (Ω).

 A discrete framework is required.
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Galerkin approximation

Discretization of Ω into triangles K of
type P1  we get a mesh Mh with N

nodes inside Ω ; Ω

M
h
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Galerkin approximation

Discretization of Ω into triangles K of
type P1  we get a mesh Mh with N

nodes inside Ω ; Ω

M
h

Instead of H1
0 (Ω) in (WP), consider the finite dimensional space

Vh :=
{
ϕ ∈ C0(Ω) |ϕ ∂Ω = 0, ϕ K linear ∀K ∈ M

}
;

Basis {ϕh,i}Ni=1 of Vh :

ϕh,i (Pj ) = δij ,

1

Pi Mh

ϕh,i
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(WPh)

{
find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

(∇uh|∇ϕh,i ) = λ
∫

Ω

uhϕh,i , ∀i = 1, . . . ,N .
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∫

Ω

(∇uh|∇ϕh,i ) = λ
∫

Ω

uhϕh,i , ∀i = 1, . . . ,N.

Pluging uh =
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j=1
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(WPh)

{
find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

(∇uh|∇ϕh,i ) = λ
∫

Ω

uhϕh,i , ∀i = 1, . . . ,N.

Pluging uh =
N∑

j=1

ujϕh,j ∈ Vh into (WPh):

N∑

j=1

∫

Ω

(∇ϕh,j |∇ϕh,i )

︸ ︷︷ ︸

Si,j

uj = λ

N∑

j=1

∫

Ω

ϕh,jϕh,i

︸ ︷︷ ︸

Mi,j

uj , ∀i = 1, . . . ,N.

 (WPh) : find ~u ∈ R
N \ {0}, and λ > 0 such that S~u = λM~u.

 Lanczos algorithm to solve (WPh).
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Shape optimization
The idea is to use a descent algorithm to minimize the cost
functional J(Ω) = λk(Ω) vol(Ω).

The first problem is to determine the domain of the functional J,
that is the admissible shapes Ω.
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Shape optimization
The idea is to use a descent algorithm to minimize the cost
functional J(Ω) = λk(Ω) vol(Ω).

The first problem is to determine the domain of the functional J,
that is the admissible shapes Ω.

Given an initial domain Ω,
we allow deformations of the
form

Ωθ = (id+θ)(Ω), θ ∈ W 1,∞(Ω).
Ω

Ωθ

x

x+ θ(x)
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ).
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ).

J ′(Ω0)(θ) =

∫

∂Ω0

(

λk(Ω0)− vol(Ω0)

(
∂uk

∂~n

)2
)

(θ|~n) dσ.

Then Pi is moved onto

P ′
i := Pi − di~n, with di = J ′(Ω0)(θi ).
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of θ 7→ J(Ωθ).

J ′(Ω0)(θ) =

∫

∂Ω0

(

λk(Ω0)− vol(Ω0)

(
∂uk

∂~n

)2
)

(θ|~n) dσ.

Then Pi is moved onto

P ′
i := Pi − di~n, with di = J ′(Ω0)(θi ).

Then, we obtain a new domain, we can mesh it, compute the
associated eigenvalues and eigenfunctions, move the new
boundary, and so on. . .
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15 first candidates to be minimizing domains of volume 1 in R
2.

k λk

1 18.17
2 36.39
3 46.30
4 64.78
5 78.53
6 89.05
7 106.51
8 120.01
9 134.06
10 144.82
11 160.55
12 174.37
13 188.84
14 202.22
15 211.16

Previously found by Oudet (’04, partly) and Antunes-Freitas (’12)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M , g)

P

U

α(P)α

α(U)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M , g)

P

U

α(P)α

α(U)

Mesh α(U) in order to consider manifold non embeddable in R
3.

 use the expression of the Laplacian in local coordinates:

∆f =
1

√

det(G )

2∑

j ,k=1

∂xj

(

G jk
√

det(G )∂xk f
)

.
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Generalization to surfaces

It implies several modifications. For instance,
◮ for the computation:

(WPh)







find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

∇uthG
−1∇ϕh,i

√
detG = λ

∫

Ω

uhϕh,i

√
detG ,

for all i = 1, . . . ,N.
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Generalization to surfaces

It implies several modifications. For instance,
◮ for the computation:

(WPh)







find uh ∈ Vh, uh 6≡ 0, and λ > 0 such that
∫

Ω

∇uthG
−1∇ϕh,i

√
detG = λ

∫

Ω

uhϕh,i

√
detG ,

for all i = 1, . . . ,N.

◮ for the optimization:
There is no homothety any more! The volume constraint
has to be taken into consideration.  Lagrange multiplier.
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We look for a saddle point of the functional

J(µ,Ω) = λk(Ω) + µ(vol(Ω)− V0),

where V0 is the volume of the initial domain Ω0.
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We look for a saddle point of the functional

J(µ,Ω) = λk(Ω) + µ(vol(Ω)− V0),

where V0 is the volume of the initial domain Ω0.

 We get a similar formula for the shape optimization.
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The algorithm gives the same results in R
2. X
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The algorithm gives the same results in R
2. X

For small domains in surfaces, the results are similar
◮ in the sphere S

2 (curvature = + 1);
◮ in the Poincaré disc D

2 (curvature = -1);
◮ in a hyperboloid H (curvature between 0 and 1)

H={(x , y , z) ∈ R
3 | z>0, x2 + y2 − z2=−1}.
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Optimal domains Ω∗
k ⊂ S

2 (volume 0.1) minimizing each of the
first k eigenvalues.
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Plot of the optimizers for λ10(Ω
∗
10,S2) and vol(Ω∗

10,S2) = 0.1, 0.2,
. . . , 0.9, 1 and 2.
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Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of
volume 0.01 in R

2, S2, D2 and the hyperboloid H.
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Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of
volume 0.01 in R

2, S2, D2 and the hyperboloid H.
The optimizers are balls B centred at a point with maximizing
the curvature.

“κ(D2) < κ(R2) < κ(H) ≤ κ(S2)”,

λ1(BS2,0.01) < λ1(BR2,0.01) < λ1(BD2,0.01) < λ1(BH,0.01)≃ ≃ ≃ ≃

1816.57 1816.80 1817.67 1819.10
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Thank you for your attention !
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