Numerical optimization of Dirichlet-Laplace eigenvalues on domains in surfaces

Régis Straubhaar INRIA Saclay – Île-de-France

CIRM - 12/16/2013

Optimization problem

Numerical processing

Let $\Omega \subset \mathbb{R}^2$ be a regular, bounded domain.

Let $\Omega \subset \mathbb{R}^2$ be a regular, bounded domain.

Consider the problem:

$$(\mathcal{P}) \begin{cases} \text{find a non-zero map } u : \Omega \to \mathbb{R} \text{ and a scalar} \lambda \in \mathbb{R} \\ (\text{both depending on } \Omega) \text{ such that} \\ -\Delta u &= \lambda u \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega. \end{cases}$$

Let $\Omega \subset \mathbb{R}^2$ be a regular, bounded domain.

Consider the problem:

$$(\mathcal{P}) \begin{cases} \text{ find a non-zero map } u : \Omega \to \mathbb{R} \text{ and a scalar} \lambda \in \mathbb{R} \\ (\text{both depending on } \Omega) \text{ such that} \\ -\Delta u &= \lambda u \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega. \end{cases}$$

Theoretical Question : Existence of a solution (λ, u) ?

Let $\Omega \subset \mathbb{R}^2$ be a regular, bounded domain.

Consider the problem:

$$(\mathcal{P}) \begin{cases} \text{ find a non-zero map } u : \Omega \to \mathbb{R} \text{ and a scalar} \lambda \in \mathbb{R} \\ (\text{both depending on } \Omega) \text{ such that} \\ -\Delta u &= \lambda u \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega. \end{cases}$$

Theoretical Question : Existence of a solution (λ , u)? Spectral theorem: Yes!

There exist a sequence of real positive eigenvalues

$$0<\lambda_1\leq\lambda_2\cdots\nearrow\infty,$$

and a sequence of associated eigenfunctions $(u_k)_{k\geq 1}$ such that

$$-\Delta u_k = \lambda_k u_k$$
, for all $k \ge 1$.

There exist a sequence of real positive eigenvalues

$$0<\lambda_1\leq\lambda_2\cdots\nearrow\infty,$$

and a sequence of associated eigenfunctions $(u_k)_{k\geq 1}$ such that

$$-\Delta u_k = \lambda_k u_k$$
, for all $k \ge 1$.

Moreover, the eigenfunctions (u_n) define a Hilbert basis of $H_0^1(\Omega)$.

Motivations

- The Laplace-spectrum encodes informations about the underlying domain;
- Optimization w.r.t. the domain to understand the behaviour of the spectrum.

Theoretically known examples:

$$\lambda_{1, \mathsf{Square}_1} \simeq 19.739$$

Theoretically known examples:

$$\lambda_{1, \mathsf{Square}_1} \simeq 19.739$$

Example computed numerically

Theoretically known examples:

 $\lambda_{1,h}(\sqrt{2}\Omega) \simeq 10.513$

Question : What bounded domain $\Omega \subset \mathbb{R}^2$ minimizes $\lambda_{k,\Omega}$?

Question : What bounded domain $\Omega \subset \mathbb{R}^2$ minimizes $\lambda_{k,\Omega}$? \rightsquigarrow That is not a good question !

(the larger Ω is, the smaller the eigenvalue $\lambda_{k,\Omega}$ is)

Question : What bounded domain of volume 1 $\Omega \subset \mathbb{R}^2$ minimizes $\lambda_{k,\Omega}?$

Question : What bounded domain of volume 1 $\Omega \subset \mathbb{R}^2$ minimizes $\lambda_{k,\Omega}?$

Or equivalently,

$$\min_{\substack{\mathsf{vol}(\Omega)=1,\\\Omega\text{ bounded}}} \lambda_{k,\Omega} \Leftrightarrow \min_{\substack{\Omega \text{ bounded}}} \mathsf{vol}(\Omega) \lambda_{k,\Omega}$$

Few known results:

Theorem (Faber-Krahn, 1923) Let B be the ball of volume 1. Then,

$$\lambda_{1,B} = \min\left\{\lambda_{1,\Omega} \left| \Omega \subset \mathbb{R}^2, \mathsf{vol}(\Omega) = 1\right.
ight\}.$$

В

Few known results:

Theorem (Faber-Krahn, 1923) Let B be the ball of volume 1. Then,

$$\lambda_{1,B} = \min\left\{\lambda_{1,\Omega} \left| \Omega \subset \mathbb{R}^2, \mathsf{vol}(\Omega) = 1 \right.
ight\}.$$

Theorem (Krahn-Szegö, 1926)

Let B_2 be the union of two identical balls, $vol(B_2) = 1$. Then,

$$\lambda_{2,B_2} = \min\left\{\lambda_{2,\Omega} \left| \Omega \subset \mathbb{R}^2, \mathsf{vol}(\Omega) = 1\right.\right\}.$$

В

 B_2

Few known results:

Theorem (Faber-Krahn, 1923) Let B be the ball of volume 1. Then,

$$\lambda_{1,B} = \min\left\{\lambda_{1,\Omega} \left| \Omega \subset \mathbb{R}^2, \mathsf{vol}(\Omega) = 1\right.
ight\}.$$

Theorem (Krahn-Szegö, 1926)

Let B_2 be the union of two identical balls, $vol(B_2) = 1$. Then,

$$\lambda_{2,B_2} = \min \left\{ \lambda_{2,\Omega} \left| \Omega \subset \mathbb{R}^2, \mathsf{vol}(\Omega) = 1 \right\}.$$

• These theorems also hold in \mathbb{R}^n , $n \ge 3$;

Another result:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013) There exists a minimizer for $\lambda_{k,\Omega}$, $k \ge 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

Another result:

Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013) There exists a minimizer for $\lambda_{k,\Omega}$, $k \ge 3$, among all quasi-open sets Ω of given volume. Moreover, it is bounded and has finite perimeter.

However, it does not provide the shape of the minimizing domain!

Open problem

For $k \geq 3$, what is the bounded domain of volume 1 in \mathbb{R}^2 which minimizes $\lambda_{k,\Omega}$?

Open problem:

Generally, for a given bounded domain Ω , it is quite impossible to find analytically the eigenvalues $\lambda_{k,\Omega}$.

Open problem:

Generally, for a given bounded domain Ω , it is quite impossible to find analytically the eigenvalues $\lambda_{k,\Omega}$.

 \rightsquigarrow numerics !

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$(\mathcal{P}) \left\{ \begin{array}{ll} \text{find } u: \Omega \to \mathbb{R} \text{ and } \lambda \in \mathbb{R} \text{ such that} \\ -\Delta u &= \lambda u \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega. \end{array} \right.$$

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$(\mathcal{WP}) \left\{ \begin{array}{l} \text{find } u \in H_0^1(\Omega) \text{ and } \lambda \in \mathbb{R} \text{ such that} \\ \int _\Omega (\nabla u | \nabla v) = \lambda \int _\Omega uv, \quad \forall v \in H_0^1(\Omega). \end{array} \right.$$

Numerical processing

Weak formulation of problem (\mathcal{P}) :

$$(\mathcal{WP}) \begin{cases} \text{find } u \in H_0^1(\Omega) \text{ and } \lambda \in \mathbb{R} \text{ such that} \\ \int _{\Omega} (\nabla u | \nabla v) = \lambda \int _{\Omega} uv, \quad \forall v \in H_0^1(\Omega). \end{cases}$$

 \rightsquigarrow A discrete framework is required.

Galerkin approximation

Discretization of Ω into triangles *K* of type $\mathcal{P}_1 \rightsquigarrow$ we get a mesh \mathcal{M}_h with *N* nodes inside Ω ;

Galerkin approximation

Discretization of Ω into triangles *K* of type $\mathcal{P}_1 \rightsquigarrow$ we get a mesh \mathcal{M}_h with *N* nodes inside Ω ;

Instead of $H_0^1(\Omega)$ in (\mathcal{WP}), consider the finite dimensional space

$$V_h := \left\{ \varphi \in \mathcal{C}^0(\overline{\Omega}) \, | \, \varphi_{|\partial\Omega} = 0, \, \varphi_{|\mathcal{K}} \text{ linear } \forall \mathcal{K} \in \mathcal{M} \right\} \; ;$$

Galerkin approximation

Discretization of Ω into triangles K of type $\mathcal{P}_1 \rightsquigarrow$ we get a mesh \mathcal{M}_h with N nodes inside Ω ;

Instead of $H_0^1(\Omega)$ in (\mathcal{WP}), consider the finite dimensional space

$$V_h := \left\{ \varphi \in \mathcal{C}^0(\overline{\Omega}) \, | \, \varphi_{1\partial\Omega} = 0, \, \varphi_{1K} \text{ linear } \forall K \in \mathcal{M} \right\} \; ;$$

Basis $\{\varphi_{h,i}\}_{i=1}^N$ of V_h :

$$\varphi_{h,i}(P_j) = \delta_{ij},$$

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \not\equiv 0, \text{ and } \lambda > 0 \text{ such that} \\ \int_{\Omega} (\nabla u_h | \nabla \varphi_{h,i}) = \lambda \int_{\Omega} u_h \varphi_{h,i}, \quad \forall i = 1, \dots, N. \end{cases}$$

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \not\equiv 0, \text{ and } \lambda > 0 \text{ such that} \\ \int\limits_{\Omega} (\nabla u_h | \nabla \varphi_{h,i}) = \lambda \int\limits_{\Omega} u_h \varphi_{h,i}, \quad \forall i = 1, \dots, N. \\ N \end{cases}$$

Pluging $u_h = \sum_{j=1}^{N} u_j \varphi_{h,j} \in V_h$ into (WP_h) :

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \not\equiv 0, \text{ and } \lambda > 0 \text{ such that} \\ \int_{\Omega} (\nabla u_h | \nabla \varphi_{h,i}) = \lambda \int_{\Omega} u_h \varphi_{h,i}, \quad \forall i = 1, \dots, N. \\ N \end{cases}$$

Pluging $u_h = \sum_{j=1}^{N} u_j \varphi_{h,j} \in V_h$ into (WP_h) :

$$\sum_{j=1}^{N} \underbrace{\int_{\Omega} (\nabla \varphi_{h,j} | \nabla \varphi_{h,i})}_{S_{i,j}} u_{j} = \lambda \sum_{j=1}^{N} \underbrace{\int_{\Omega} \varphi_{h,j} \varphi_{h,i}}_{M_{i,j}} u_{j}, \quad \forall i = 1, \dots, N.$$

 $\rightsquigarrow (\mathcal{WP}_h): \text{ find } \vec{u} \in \mathbb{R}^N \setminus \{0\}, \text{ and } \lambda > 0 \text{ such that } S\vec{u} = \lambda M\vec{u}.$

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \not\equiv 0, \text{ and } \lambda > 0 \text{ such that} \\ \int\limits_{\Omega} (\nabla u_h | \nabla \varphi_{h,i}) = \lambda \int\limits_{\Omega} u_h \varphi_{h,i}, \quad \forall i = 1, \dots, N. \end{cases}$$

Pluging $u_h = \sum_{j=1}^{N} u_j \varphi_{h,j} \in V_h$ into (WP_h) :

$$\sum_{j=1}^{N} \underbrace{\int_{\Omega} (\nabla \varphi_{h,j} | \nabla \varphi_{h,i})}_{S_{i,j}} u_{j} = \lambda \sum_{j=1}^{N} \underbrace{\int_{\Omega} \varphi_{h,j} \varphi_{h,i}}_{M_{i,j}} u_{j}, \quad \forall i = 1, \dots, N.$$

 $\rightsquigarrow (\mathcal{WP}_h): \text{ find } \vec{u} \in \mathbb{R}^N \setminus \{0\}, \text{ and } \lambda > 0 \text{ such that } S\vec{u} = \lambda M\vec{u}.$

 \rightsquigarrow Lanczos algorithm to solve (\mathcal{WP}_h) .

Shape optimization

The idea is to use a descent algorithm to minimize the *cost* functional $J(\Omega) = \lambda_k(\Omega) \operatorname{vol}(\Omega)$.

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω .

Shape optimization

The idea is to use a descent algorithm to minimize the *cost* functional $J(\Omega) = \lambda_k(\Omega) \operatorname{vol}(\Omega)$.

The first problem is to determine the domain of the functional J, that is the admissible shapes Ω .

Given an initial domain Ω , we allow deformations of the form

$$\Omega_{ heta} = (\mathrm{id} + heta)(\Omega), \ heta \in W^{1,\infty}(\Omega).$$

Now, we can compute the derivative with respect to the domain of *J*, that is the Fréchet derivative of $\theta \mapsto J(\Omega_{\theta})$.

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

Then, we obtain a new domain,

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

Then, we obtain a new domain, we can mesh it,

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions,

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary,

$$J'(\Omega_0)(\theta) = \int_{\partial \Omega_0} \left(\lambda_k(\Omega_0) - \operatorname{vol}(\Omega_0) \left(\frac{\partial u_k}{\partial \vec{n}} \right)^2 \right) (\theta | \vec{n}) \, \mathrm{d}\sigma.$$

Then P_i is moved onto

$$P'_i := P_i - d_i \vec{n}$$
, with $d_i = J'(\Omega_0)(\theta_i)$.

Then, we obtain a new domain, we can mesh it, compute the associated eigenvalues and eigenfunctions, move the new boundary, and so on...

15 first candidates to be minimizing domains of volume 1 in \mathbb{R}^2 .

				k	λ_k
\bigcirc	$\bigcirc\bigcirc$			1234567890 10	18.17 36.39 46.30 64.78 78.53 89.05 106.51 120.01 134.06 144.82
$\bigcirc\bigcirc$	\bigcirc	\bigcirc			
\bigcirc	\bigcirc	\bigcirc			
\bigcirc	\bigcirc	\bigcirc		11 12 13	160.55 174.37 188.84
\bigcirc	\bigcirc	\bigcirc		14 15	202.22 211.16

Previously found by Oudet ('04, partly) and Antunes-Freitas ('12)

Let (M, g) be a Riemannian manifold of dimension 2

Let (M, g) be a Riemannian manifold of dimension 2

Mesh $\alpha(U)$ in order to consider manifold non embeddable in \mathbb{R}^3 . \rightsquigarrow use the expression of the Laplacian in local coordinates:

$$\Delta f = \frac{1}{\sqrt{\det(G)}} \sum_{j,k=1}^{2} \partial x_j \left(G^{jk} \sqrt{\det(G)} \partial x_k f \right).$$

It implies several modifications. For instance,

► for the computation:

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \neq 0, \text{ and } \lambda > 0 \text{ such that} \\ \int \nabla u_h^t G^{-1} \nabla \varphi_{h,i} \sqrt{\det G} = \lambda \int_{\Omega} u_h \varphi_{h,i} \sqrt{\det G}, \\ \int_{\Omega} \sigma_{\text{for all } i = 1, \dots, N.} \end{cases}$$

It implies several modifications. For instance,

► for the computation:

$$(\mathcal{WP}_h) \begin{cases} \text{find } u_h \in V_h, u_h \neq 0, \text{ and } \lambda > 0 \text{ such that} \\ \int \nabla u_h^t G^{-1} \nabla \varphi_{h,i} \sqrt{\det G} = \lambda \int_{\Omega} u_h \varphi_{h,i} \sqrt{\det G}, \\ \prod_{\Omega \text{ for all } i = 1, \dots, N.} \end{pmatrix}$$

for the optimization: There is no homothety any more! The volume constraint has to be taken into consideration. ~> Lagrange multiplier.

We look for a saddle point of the functional

$$J(\mu, \Omega) = \lambda_k(\Omega) + \mu(\operatorname{vol}(\Omega) - V_0),$$

where V_0 is the volume of the initial domain Ω_0 .

We look for a saddle point of the functional

$$J(\mu, \Omega) = \lambda_k(\Omega) + \mu(\operatorname{vol}(\Omega) - V_0),$$

where V_0 is the volume of the initial domain Ω_0 .

 \rightsquigarrow We get a similar formula for the shape optimization.

The algorithm gives the same results in \mathbb{R}^2 . \checkmark

The algorithm gives the same results in \mathbb{R}^2 . \checkmark For small domains in surfaces, the results are *similar*

• in the sphere \mathbb{S}^2 (curvature = + 1);

The algorithm gives the same results in \mathbb{R}^2 . \checkmark For small domains in surfaces, the results are *similar*

- in the sphere \mathbb{S}^2 (curvature = + 1);
- In the Poincaré disc D² (curvature = -1);

The algorithm gives the same results in \mathbb{R}^2 . \checkmark For small domains in surfaces, the results are *similar*

- in the sphere \mathbb{S}^2 (curvature = + 1);
- ▶ in the Poincaré disc D² (curvature = -1);
- ▶ in a hyperboloid H (curvature between 0 and 1)

$$H = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0, x^2 + y^2 - z^2 = -1\}.$$

Optimal domains $\Omega_k^* \subset \mathbb{S}^2$ (volume 0.1) minimizing each of the first *k* eigenvalues.

Plot of the optimizers for $\lambda_{10}(\Omega^*_{10,\mathbb{S}^2})$ and $vol(\Omega^*_{10,\mathbb{S}^2}) = 0.1$, 0.2, ..., 0.9, 1 and 2.

Comparison of the first eigenvalues for optimal domains of volume 0.01 in \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{D}^2 and the hyperboloid *H*.

Comparison of the first eigenvalues for optimal domains of volume 0.01 in \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{D}^2 and the hyperboloid *H*. The optimizers are balls *B* centred at a point with maximizing the curvature.

Comparison of the first eigenvalues for optimal domains of volume 0.01 in \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{D}^2 and the hyperboloid *H*. The optimizers are balls *B* centred at a point with maximizing the curvature.

$$``\kappa(\mathbb{D}^2) < \kappa(\mathbb{R}^2) < \kappa(H) \le \kappa(\mathbb{S}^2)",$$

Comparison of the first eigenvalues for optimal domains of volume 0.01 in \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{D}^2 and the hyperboloid *H*. The optimizers are balls *B* centred at a point with maximizing the curvature.

$$``\kappa(\mathbb{D}^2) < \kappa(\mathbb{R}^2) < \kappa(H) \le \kappa(\mathbb{S}^2)",$$

 $\begin{array}{rcl} \lambda_1(B_{\mathbb{S}^2,0.01}) &<& \lambda_1(B_{\mathbb{R}^2,0.01}) &<& \lambda_1(B_{\mathbb{D}^2,0.01}) &<& \lambda_1(B_{H,0.01}) \\ & & & & & & \\ 12 & & & & & & & \\ 1816.57 & 1816.80 & 1817.67 & 1819.10 \end{array}$

Thank you for your attention !