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Geometric problem

Let Q C R? be a regular, bounded domain.

Consider the problem:

find a non-zero map v : 2 — R and a scalar\ € R
(both depending on £2) such that
—Au = Au inQ,

u = 0 onoQ.

(P)

Theoretical Question : Existence of a solution (), u)?
Spectral theorem: Yes!
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There exist a sequence of real positive eigenvalues
0< A <Ax--v Soo,
and a sequence of associated eigenfunctions (ux)x>1 such that

—Aug = Aguy, forall kK > 1.
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There exist a sequence of real positive eigenvalues
0< AL <Ap--- So0,
and a sequence of associated eigenfunctions (ux)x>1 such that
—Au, = Auy, forall kK > 1.

Moreover, the eigenfunctions (u,,) define a Hilbert basis of
H ().
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Motivations

» The Laplace-spectrum encodes informations about the
underlying domain;

» Optimization w.r.t. the domain to understand the behaviour
of the spectrum.
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Theoretically known examples:

)\1,DiSC1 = 18168 )\]_’Squarel >~ 19739

Example computed numerically

>

A14(R) ~ 21.026
A1p(V2Q) ~ 10.513
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Question : What bounded domain Q C R? minimizes A\x q?
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Optimization problem

Question : What bounded domain Q C R? minimizes A\x q?
~ That is not a good question !

\/

1
Ak H(Q) = ﬁ)\k,ﬂ

(the larger Q is, the smaller the eigenvalue Ay q is)
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Optimization problem

Question : What bounded domain of volume 1 Q C R? minimizes
Ak’

Or equivalently,

min  Arq < min  vol(Q) A\xq
vol(Q)=1, Q bounded ( ) ’
Q bounded
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Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

)\1’3 = min {)\17Q‘QCR2,VO|(Q)= 1}. ‘B
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Few known results:

Theorem (Faber-Krahn, 1923)
Let B be the ball of volume 1. Then,

A1,8 = min {)\179 ‘Q C R2,VOI(Q) = 1} ) ‘B
Theorem (Krahn-Szego, 1926)

Let B, be the union of two identical balls, vol(By) = 1. Then,

Ao.g, = min { X0 |2 CR? vol(Q) = 1}. &

» These theorems also hold in R", n > 3;
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Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for Ak q, k > 3, among all quasi-open

sets Q) of given volume. Moreover, it is bounded and has finite
perimeter.
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Another result:
Theorem (Bucur 2012 & Mazzoleni, Pratelli 2013)

There exists a minimizer for Ak q, k > 3, among all quasi-open
sets Q) of given volume. Moreover, it is bounded and has finite
perimeter.

However, it does not provide the shape of the minimizing
domain!

Open problem

For k > 3, what is the bounded domain of volume 1 in R? which
minimizes A\ q?
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Open problem:

Generally, for a given bounded domain €, it is quite impossible
to find analytically the eigenvalues A q.
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Open problem:

Generally, for a given bounded domain €, it is quite impossible
to find analytically the eigenvalues A q.

~» numerics !
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Numerical processing

Weak formulation of problem (P):

find u: Q — R and A € R such that
(P)X —Au = Xu inQ,
u =0 on 0.
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find u € H3() and A € R such that
(WP) /(vu|vV) - )\/uv, v € HA(Q).
Q Q
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Numerical processing

Weak formulation of problem (P):

find u € H}(2) and A € R such that
(WP) /(vu|vV) - )\/uv, v € HA(Q).
Q Q

~~ A discrete framework is required.
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Galerkin approximation

Discretization of Q into triangles K of
type P; ~ we get a mesh M, with N
nodes inside Q ;
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Galerkin approximation

Discretization of € into triangles K of
type P1 ~~ we get a mesh M, with N
nodes inside Q ;

Instead of H3(Q2) in (WP), consider the finite dimensional space

Vi i={ € C°%Q) [ 0190 = 0, pix linear VK € M} ;

Basis {¢p,;} 1, Of Vj:

on,i(Pj) = dijs
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(th) { f(vuh|V90h’,') = )\f UhPh,i, Vi=1,...,N.
Q Q
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find up € Vp,up £ 0, and A > 0 such that
(th) f(vuh|V90h’,') = )\f UhPh,i, Vi=1,...,N.
Q Q

N
Pluging up = >~ ujpnj € Vj into (WPp):
j=1
N N
Z /(V(ph’ﬂvwh,,’) UJ' = )\Z/goh,jgoh,,- uj, Vi = 1, N N.
j=1gq j=1q
~ ~ —

Sij M; j
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N
Pluging up = >~ ujpnj € Vj into (WPp):

j=1
N
Z/(V%JW%: uj = AZ/SOh,jSOhI uj, Vi= ]- N

J= 1Q
- S———
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~ (WPy) : find i € RN\ {0}, and A > 0 such that Si = AM.
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find up € Vi, up 20, and A > 0 such that
(th) f(vuh|V90h’,') = )\f UhPh,i, Vi=1,...,N.
Q Q

N
Pluging up = >~ ujpnj € Vj into (WPp):

j=1
N
Z/(V%JW%: uj = )\Z/Sohdﬁohl uj, Vi= ]- N

J= 1Q
- S———
SiJ M; j

~ (WPy) : find i € RN\ {0}, and A > 0 such that Si = AM.

~+ Lanczos algorithm to solve (WP4).
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The idea is to use a descent algorithm to minimize the cost
functional J(2) = A (€2) vol(€2).

The first problem is to determine the domain of the functional J,
that is the admissible shapes Q.
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Numerical processing

Shape optimization
The idea is to use a descent algorithm to minimize the cost
functional J(Q2) = A\¢(€2) vol(2).

The first problem is to determine the domain of the functional J,

that is the admissible shapes €.
i)

Given an initial domain €, ;

we allow deformations of the

form

Qg = (id+6)(Q), § € WL>(Q).
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of 6 — J(Qy).
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of 6 — J(Qy).

2
<)\k(QO) — Vol(Qo) (%) ) (ﬂ\ﬁ) do.

Then P; is moved onto

s@o)(6) = [

Qo

P,, = P,' — d,'l_i, with d,' = J,(Qo)(e,)
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Then P; is moved onto
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Qo
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15

24



Numerical processing
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Now, we can compute the derivative with respect to the domain
of J, that is the Fréchet derivative of 6 — J(Qy).

2
(Ak(QO) — Vol(Qo) <%> ) (9|ﬁ) do.

Then P; is moved onto

s@)6) = [

Qo

P,{ = P; — d;ﬁ, with di = JI(Q())(Q;).

Then, we obtain a new domain, we can mesh it, compute the
associated eigenvalues and eigenfunctions, move the new
boundary, and so on...

15
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15 first candidates to be minimizing domains of volume 1 in R2,

Q Q Q @ 18)\.117
9

36.39
46.30
64.78
78.53
89.05
106.51
120.01
134.06
10 | 144.82
11 | 160.55
12 | 174.37
13 | 188.84
14 | 202.22
15 | 211.16

O

SRYAVAN

O©OO~NOUIRWNEFE X

DO D

-
<)
o

Previously found by Oudet

~

‘04, partly) and Antunes-Freitas ('12)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M.g)
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Generalization to surfaces

Let (M, g) be a Riemannian manifold of dimension 2

(M.¢)

Mesh a(U) in order to consider manifold non embeddable in R3.
~ use the expression of the Laplacian in local coordinates:

Af =

W z 05 (67 /det(G)oxef )
e
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Generalization to surfaces

It implies several modifications. For instance,
» for the computation:

find up € Vi, up # 0, and A > 0 such that
WPh) /Vuf,G—lvwh,;\/mz)\/uwhﬂ/m’
Q

Q
foralli=1,... N.
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Generalization to surfaces

It implies several modifications. For instance,
» for the computation:

find up € Vi, up # 0, and A > 0 such that
WPh) /V“;G‘NWJM:)\/UW;,,,-\/R,
Q

Q
foralli=1,... N.

» for the optimization:
There is no homothety any more! The volume constraint
has to be taken into consideration. ~~ Lagrange multiplier.

18/24
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We look for a saddle point of the functional
J(1,2) = A(2) + p(vol(2) — Vo),

where V; is the volume of the initial domain Q.
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We look for a saddle point of the functional
J(1,2) = A(2) + p(vol(2) — Vo),

where V; is the volume of the initial domain Q.

~~ We get a similar formula for the shape optimization.
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The algorithm gives the same results in R2.
For small domains in surfaces, the results are similar

» in the sphere S? (curvature = + 1);
» in the Poincaré disc D? (curvature = -1);
» in a hyperboloid H (curvature between 0 and 1)

H:{(X7y7z) €R3 | Z>0,X2—i—y2 —22:_1}'
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Numerical processing

Optimization problem

Geometric problem
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Plot of the optimizers for A1o(2], s2) and vol(23, ) = 0.1, 0.2,
...,09,1and 2. ’ ’
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Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of
volume 0.01 in R?, S?, D? and the hyperboloid H.
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Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of
volume 0.01 in R?, S?, D? and the hyperboloid H.

The optimizers are balls B centred at a point with maximizing
the curvature.

"W(D?) < £(R?) < (M) < ()",
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Comparison between manifolds

Comparison of the first eigenvalues for optimal domains of
volume 0.01 in R?, S?, D? and the hyperboloid H.

The optimizers are balls B centred at a point with maximizing
the curvature.

“(D?) < K(R?) < k(H) < k(S?)”,

M(Bs2po1) < M(Breooi) < AM(Bpeoo1) < Ai(Bho.or)
[ [2 [2 [2
1816.57 1816.80 1817.67 1819.10
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Thank you for your attention !
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