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Very Large Networks

Social Networks
 Reflect social structures in detail
 Example question:  Can we 

distinguish democratic countries 
from totalitarian ones by looking at 
their Facebook structure?

Data size
 GigaByte upto TeraByte 

(only the graph)
 Data exchange (movies, pictures, 

etc.) in the Peta-Byte range
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Source: [1]
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Very Large Networks

Problem
 Such networks are typically too 

large to be compared
 No efficient algorithm for graph 

isomorphism
 In order to apply learning 

algorithms, we need features that 
describe different aspects of the 
network structure

3
Source: [1]
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Sublinear Algorithms

Observations
 Classical algorithms are too slow to handle very large networks
 In some learning applications we want to be able to handle many features 

of many large networks

Property Testing
 Study (structural) properties of very large networks via random sampling
 A form of approximation
 Central question: What can we provably learn from the local structure of a 

graph about ist global structure? 
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Graph
 Graph G=(V,E), V={1,…,n}
 Bounded max. degree D

Definition(graph property)
 A graph property is a set of graphs that is closed under isomorphism.

Definition (ε-far)
 A graph G=(V,E) is ε-far from a property P, if one has to modify more than  

εDn edges to obtain a degree bounded graph with property P.
 If a graph is not ε-far from P, it is called ε-close.
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Graph Properties

P

ε-close ε-far
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Property Testing [Rubinfeld, Sudan, SICOMP 96]

Property Tester for P [Goldreich, Ron, Algorithmica 02]
 Oracle access to graph G=(V,E):

Query(i,j) returns i-th edge incident to vertex j or a symbol that this edge does 
not exist

 Accepts with prob. at least 2/3, if G has property P 
 Rejects with prob. at least 2/3, if G is ε-far from P

Quality measures
 Query complexity: maximal number of oracle queries
 Running time

6
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A Simple Example: Connectivity

Connectivity
 Every vertex is connected (has a path) to every vertices
 ε-far: There are at least εDn/2 connected components

Connectivitytester(ε) [Goldreich, Ron, Algorithmica 02]

(1) Sample set S with s=O(1/ε) vertices uniformly at random from V

(2) For every vertex from S:

(3)      Perform a BFS until
          (a) 4/(εD) vertices have been discovered or
          (b) all vertices of a small connected component have been discovered
     if (b) then reject

(4) accept

7
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Two Main Sampling Approaches

8

1. Sample set S of vertices 
uniformly at random
 
2. For each vertex in S determine 
subgraph induced by vertices within 
distance at most k
 
3. Decide based on the observed 
subgraph

* Requires bounded max. degree

Frequent subgraph analysis*

1. Sample set S of vertices 
uniformly at random
 
2. From each vertex in S start a 
t-step random walk
 
3. Decide based on the observed 
subgraph

Random walks
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General Question

Definition
 A graph property P is called testable, if there is a q=q(ε,D), such that for every 

n>0 and every ε, 0< ε ≤1, a property tester Aε,D,n with query complexity q 
exists.

General question
 Which properties are testable with constant query complexity for constant ε? 

9
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Frequent Subgraph Analysis

Frequent Subgraph Analysis1
1.  Draw sample set S⊆V, |S|=s(ε,D), 

uniformly at random 

2.  Let k=k(ε,D)

3.  Accept, if all k-balls H(k,v) have 
the studied property

4.  Reject otherwise

10

Definition (k-ball)
A k-ball H(k,v) around a root vertex v 
in a graph G is the subgraph induced by 
all vertices of distance at most k from v
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Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]
 Which properties are testable with constant query complexity, if the input 

graph is planar?
 Planarity is an example for a larger class of graphs

11
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Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]
 Which properties are testable with constant query complexity, if the input 

graph is planar?
 Planarity is an example for a larger class of graphs

How does planarity help?
 Every degree bounded planar 

graph can be partitioned into 
connected components of size
 O(1/ε²) by removing at most 
εDn/2 edges

 If a graph is ε-far from P, then
it is ε/2-far after the removal of
these edges

12
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Simplified General Question

Theorem [Czumaj, Shapira, Sohler, SICOMP 09]
 In the class of planar graphs every graph property that is closed under vertex 

removal is (non-uniformly) testable.

Proof idea (simplified)
 Use frequent subgraph analysis
 G has P: The tester accepts by closedness under vertex removal
 G is ε-far from P: After removal of εDn/2 edges, G has small connected 

components and is ε/2-far from P
 Hence, there are many components that do not have property P
 With constant probability a random k-ball contains such a component
 Because of closedness the k-ball does not have P and the tester rejects

13
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What FrequentSubgraphAnalysis1 Cannot Do

PlanarityTesterFirstTry(ε,n)  
(1) Draw s=s(ε,D) k-balls uniformly at random for a k=k(ε,D) 

(2)  Accept, if only planar k-balls are drawn and reject, otherwise

14
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What FrequentSubgraphAnalysis1 Cannot Do

PlanarityTesterFirstTry(ε,n) 
(1) Draw s=s(ε,D) k-balls uniformly at random for a k=k(ε,D) 

(2)  Accept, if only planar k-balls are drawn and reject, otherwise

Counter example:
 There are classes of graphs, such that

every cycle has length Ω(log n) and that
are ε-far from planar

15
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Extended Frequent Subgraph Analysis

Frequent Subgraph Analysis II
1.  Draw sample set S⊆V, |S|=s(ε,D), 

uniformly at random 

2.  Let k=k(ε,D)

3.  Accept, based on the frequency of 
the observed k-balls and internal 
randomness

16

Observations
 For constant k and D there is only 

a constant number of non-isomorphic 
k-balls

 The distribution vector  freq(G,k) of the 
k-balls in a graph G describes the 
relative  frequency of k-balls in G
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Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
 Every graph property that is closed under removal of vertices, removal of 

edges and contraction of edges is (non-uniformly) testable.

17
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Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
 Every graph property that is closed under removal of vertices, removal of 

edges and contraction of edges is (non-uniformly) testable.

Getting some intuition
 We will first try to distinguish expander graphs from planar graphs

Two definitions
 Define the conductance of a set of vertices U to be |E(U, V-U)| / |U|. 
 A graph is called an expander graph, if every set U of vertices with |U| ≤|V|/2 

has conductance Ω(1)

18



Prof. Dr. Christian Sohler
Komplexitätstheorie und 
effiziente Algorithmen

Some intuition

Comparing trees and high girth expander graphs

19
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Some intuition

Comparing trees and high girth expander graphs

20



Prof. Dr. Christian Sohler
Komplexitätstheorie und 
effiziente Algorithmen

Some intuition

Planar graphs
• Planar graphs can be decomposed into connected components of size at 

most k by removing at most Dn/(2 √k) edges
• On average such a connected component is incident to O(√k) removed edges 

and so it has conductance 1/√k

Expander graphs
• Conductance is Ω(1)

Conclusion
• We can distinguish expander graphs from planar graphs by considering the 

local conductance

21
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Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
 Every graph property that is closed under removal of vertices, removal of 

edges and contraction of edges is (non-uniformly) testable.

Proof idea
 Use an approximation of the frequency vector of k-balls to test, whether the 

graph is hyperfinite, i.e. can be decomposed into small components (note: 
Every graph in the class above can be decomposed!)

 Continue with ideas of the previous algorithm

22
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Back to the General Question

Theorem [Hassidim, Kelner, Nguyen, Onak, FOCS 09]
 Every (non-degenerate) hereditary property can be tested in hyperfinite 

graphs.

New contributions
 Explicit algorithm to compute partition into small components
 Improved query complexity
 Simplified proof

23
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Back to the General Question

GlobalPartitioning(k,δ)  [Hassidim, Kelner, Nguyen, Onak, 09]
 π = (π  ,…, π  ) = random permutation of the vertices
 P = ∅
 while G is not empty do
     Let v be the first vertex in G according to π
     if there exists a (k,δ)-isolated neighborhood of v in G then
         S = this neighborhood
     else S = {v}
     P = P ∪ {S}
     remove vertices in S from the graph

24

1 n

(k,δ)-isolated neighborhood of v:
Connected set S of size at most k 
with v∈S and at most δ|S| edges 
between S and V 
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Back to the General Question

Definition [Hassidim, Kelner, Nguyen, Onak, 09]
We say that O is a (randomized) (ε,k)-partitioning oracle, if given query access 

to a planar graph G=(V,E), it provides query access to a partition P of V. 
For a query about v∈V, O returns P[v]. The partition has the following 
properties:

 P is a function of the graph and the random bits
 For every v∈V, |P[v]| ≤ k and P[v] induces a connected graph in G
 |{(v,w)∈E : P[v] ≠ P[w]}| ≤ ε⋅|V| with prob. 9/10

25
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Back to the general question

Lemma [Variant of Lemma by Hassidim, Kelner, Nguyen, Onak, 09]
Let G be a planar graph with degree bounded by D≥2. Let R=R(ε,D) be any 

function and let S be a set of |S|=R vertices chosen uniformly at random. 
Then there is a k=k(ε) such that there is an (εD,k)-partitioning oracle that 
inspects a D=D  (ε,D)-ball of every vertex in S and with probability 9/10 
returns the partition class (and component) of every vertex in S.

26
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Back to the General Question

Lemma [Newman,S. 2013]
 Let G be any graph with maximum degree D. We can estimate the 

frequency vector freq(G,k) upto l –error ε by sampling Q=f(ε,k) vertices 
uniformly at random, explore their k-discs, and return the relative 
frequencies of the sampled discs. We call this algorithm 
EstimateFrequencies.

27
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Back to the General Question

Theorem [Newman, Sohler, STOC 11]
 Let G and H be two hyperfinite (planar) graphs with n vertices and max. 

degree D. Then for every ε, 0 < ε ≤ 1, there is λ=λ (ε,D) and k=(ε,D), such that: 

If ||freq(G,k) – freq(H,k)||  ≤ λ then G ε-close to H.

28
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Back to the General Question

Outline (first idea)
 Let G and H be two graphs on n vertices with freq(G,k) = freq(H,k) for 

sufficiently large k
 (1)  Use (ε,k‘)-partitioning oracle on G and H resulting in graphs G* and H*
 (2)  Show that freq(G*,k‘)=freq(H*,k‘)
 Wrapup: By removal of at most εn edges we obtain two graphs with the same 

number of isomorphic connected components

Problem
 There is no reason to expect G* and H* to have the same frequency vectors

29
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Back to the General Question

Outline (second idea)
 Use probabilistic method to prove that for some choice of permutations of the 

vertex sets of G and H the partitioning oracle will compute graphs G* and H* 
with freq(G*,k‘)≈freq(H*,k‘)

30
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Back to the General Question

Theorem [Newman, Sohler, STOC 11]
 Let G and H be two hyperfinite (planar) graphs with n vertices and max. 

degree D. Then for every ε, 0 < ε ≤ 1, there is λ=λ (ε,D) and k=(ε,D), such that: 

If ||freq(G,k) – freq(H,k)||  ≤ λ then G ε-close to H.

Corollary [Newman, Sohler, STOC 11]
 Every property is (non-uniformly) testable in the class of hyperfinite graphs
 Every hyperfinite graph property is (non-uniformly) testable

31
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Challenges

Expander graphs
 Hyperfinite graphs are the „opposite“ of expander graphs
 Social networks are typically not hyperfinite (small world phenomenon)

Degree bound
 Frequent subgraph analysis requires bounded degree
 Which classes of properties can be tested in graphs with small average 

degree?

Directed graphs (when edges are seen from one side)
 How to analyze random walks? How to avoid „to get stuck“?
 Testable properties?

32
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Challenges

Query complexity / running time
 The general results have a poor dependence on ε
 Which properties can be tested with polynomial (linear) query complexity 

(running time)?
 Can planarity be tested in polynomial query complexity?

One-sided vs. Two-sided error
 The general results have two-sided error
 In many applications, one wants a „counter-example“, if the graph does not 

have a property
 Which properties can be efficiently tested with one-sided error?

33
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                  Thank you!

Image sources:

[1] TonZ; Image under Creative Commons License
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