Coreset and sampling approaches for the analysis of very large data sets – Part II

Christian Sohler
Very Large Networks

Social Networks

- Reflect social structures in detail
- **Example question:** Can we distinguish democratic countries from totalitarian ones by looking at their Facebook structure?

Data size

- GigaByte upto TeraByte (only the graph)
- Data exchange (movies, pictures, etc.) in the Peta-Byte range

Source: [1]
Very Large Networks

Problem
- Such networks are typically too large to be compared
- No efficient algorithm for graph isomorphism
- In order to apply learning algorithms, we need features that describe different aspects of the network structure

Source: [1]
Sublinear Algorithms

Observations
- Classical algorithms are too slow to handle very large networks
- In some learning applications we want to be able to handle many features of many large networks

Property Testing
- Study (structural) properties of very large networks via random sampling
- A form of approximation
- Central question: What can we provably learn from the local structure of a graph about its global structure?
Graph Properties

Graph
- Graph $G=(V,E)$, $V=\{1,\ldots,n\}$
- Bounded max. degree D

Definition (graph property)
- A **graph property** is a set of graphs that is closed under isomorphism.

Definition (ε-far)
- A graph $G=(V,E)$ is **ε-far from a property P**, if one has to modify more than εDn edges to obtain a degree bounded graph with property P.
- If a graph is not ε-far from P, it is called **ε-close**.
Property Testing [Rubinfeld, Sudan, SICOMP 96]

Property Tester for P [Goldreich, Ron, Algorithmica 02]

- Oracle access to graph $G=(V,E)$:
 - Query(i,j) returns i-th edge incident to vertex j or a symbol that this edge does not exist
- Accepts with prob. at least $2/3$, if G has property P
- Rejects with prob. at least $2/3$, if G is ε-far from P

Quality measures

- Query complexity: maximal number of oracle queries
- Running time
A Simple Example: Connectivity

Connectivity
- Every vertex is connected (has a path) to every vertices
- ε-far: There are at least $\varepsilon Dn/2$ connected components

Connectivity tester (ε) [Goldreich, Ron, Algorithmica 02]
(1) Sample set S with $s=O(1/\varepsilon)$ vertices uniformly at random from V
(2) For every vertex from S:
(3) Perform a BFS until
 (a) $4/(\varepsilon D)$ vertices have been discovered or
 (b) all vertices of a small connected component have been discovered
 if (b) then reject
(4) accept
Two Main Sampling Approaches

Frequent subgraph analysis

1. Sample set S of vertices uniformly at random

2. For each vertex in S determine subgraph induced by vertices within distance at most k

3. Decide based on the observed subgraph

* Requires bounded max. degree

Random walks

1. Sample set S of vertices uniformly at random

2. From each vertex in S start a t-step random walk

3. Decide based on the observed subgraph
General Question

Definition
- A graph property P is called testable, if there is a $q=q(\varepsilon, D)$, such that for every $n>0$ and every $\varepsilon, 0<\varepsilon \leq 1$, a property tester $A_{\varepsilon,D,n}$ with query complexity q exists.

General question
- Which properties are testable with constant query complexity for constant ε?
Frequent Subgraph Analysis

Frequent Subgraph Analysis
1. Draw sample set \(S \subseteq V, |S| = s(\epsilon, D) \), uniformly at random
2. Let \(k = k(\epsilon, D) \)
3. Accept, if all \(k \)-balls \(H(k, v) \) have the studied property
4. Reject otherwise

Definition (k-ball)
A \(k \)-ball \(H(k, v) \) around a root vertex \(v \) in a graph \(G \) is the subgraph induced by all vertices of distance at most \(k \) from \(v \).
Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]

- Which properties are testable with constant query complexity, if the input graph is planar?
- Planarity is an example for a larger class of graphs
Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]

- Which properties are testable with constant query complexity, if the input graph is planar?
- Planarity is an example for a larger class of graphs

How does planarity help?

- Every degree bounded planar graph can be partitioned into connected components of size $O(1/\varepsilon^2)$ by removing at most $\varepsilon Dn/2$ edges
- If a graph is ε-far from P, then it is $\varepsilon/2$-far after the removal of these edges
Simplified General Question

Theorem [Czumaj, Shapira, Sohler, SICOMP 09]
- In the class of planar graphs every graph property that is closed under vertex removal is (non-uniformly) testable.

Proof idea (simplified)
- Use frequent subgraph analysis
- \(G \) has \(P \): The tester accepts by closedness under vertex removal
- \(G \) is \(\varepsilon \)-far from \(P \): After removal of \(\varepsilon Dn/2 \) edges, \(G \) has small connected components and is \(\varepsilon/2 \)-far from \(P \)
- Hence, there are many components that do not have property \(P \)
- With constant probability a random \(k \)-ball contains such a component
- Because of closedness the \(k \)-ball does not have \(P \) and the tester rejects
What FrequentSubgraphAnalysis1 Cannot Do

PlanarityTesterFirstTry(ϵ,n)

1. Draw $s = s(\epsilon,D)$ k-balls uniformly at random for a $k = k(\epsilon,D)$
2. Accept, if only planar k-balls are drawn and reject, otherwise
What FrequentSubgraphAnalysis cannot do

PlanarityTesterFirstTry(ε,n)
(1) Draw s=s(ε,D) k-balls uniformly at random for a k=k(ε,D)
(2) Accept, if only planar k-balls are drawn and reject, otherwise

Counter example:
- There are classes of graphs, such that every cycle has length $\Omega(\log n)$ and that are ε-far from planar
Extended Frequent Subgraph Analysis

Frequent Subgraph Analysis II
1. Draw sample set \(S \subseteq V, |S|=s(\epsilon, D) \), uniformly at random
2. Let \(k=k(\epsilon, D) \)
3. Accept, based on the frequency of the observed \(k \)-balls and internal randomness

Observations
- For constant \(k \) and \(D \) there is only a constant number of non-isomorphic \(k \)-balls
- The distribution vector \(\text{freq}(G,k) \) of the \(k \)-balls in a graph \(G \) describes the relative frequency of \(k \)-balls in \(G \)
Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
- Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.
Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
- Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.

Getting some intuition
- We will first try to distinguish expander graphs from planar graphs

Two definitions
- Define the *conductance* of a set of vertices U to be $|E(U, V-U)| / |U|$.
- A graph is called an *expander graph*, if every set U of vertices with $|U| \leq |V|/2$ has conductance $\Omega(1)$
Some intuition

Comparing trees and high girth expander graphs
Some intuition

Comparing trees and high girth expander graphs
Some intuition

Planar graphs
- Planar graphs can be decomposed into connected components of size at most k by removing at most $Dn/(2\sqrt{k})$ edges
- On average such a connected component is incident to $O(\sqrt{k})$ removed edges and so it has conductance $1/\sqrt{k}$

Expander graphs
- Conductance is $\Omega(1)$

Conclusion
- We can distinguish expander graphs from planar graphs by considering the local conductance
Back to the General Question

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]
- Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.

Proof idea
- Use an approximation of the frequency vector of k-balls to test, whether the graph is **hyperfinite**, i.e. can be decomposed into small components (note: Every graph in the class above can be decomposed!)
- Continue with ideas of the previous algorithm
Back to the General Question

Theorem [Hassidim, Kelner, Nguyen, Onak, FOCS 09]
- Every (non-degenerate) hereditary property can be tested in hyperfinite graphs.

New contributions
- Explicit algorithm to compute partition into small components
- Improved query complexity
- Simplified proof
Back to the General Question

GlobalPartitioning(k, δ) [Hassidim, Kelner, Nguyen, Onak, 09]

- \(\pi = (\pi_1, \ldots, \pi_n) \) = random permutation of the vertices
- \(P = \emptyset \)
- while \(G \) is not empty do
 - Let \(v \) be the first vertex in \(G \) according to \(\pi \)
 - if there exists a \((k, \delta)\)-isolated neighborhood of \(v \) in \(G \) then
 - \(S = \) this neighborhood
 - else \(S = \{v\} \)
 - \(P = P \cup \{S\} \)
 - remove vertices in \(S \) from the graph

\((k, \delta)\)-isolated neighborhood of \(v \): Connected set \(S \) of size at most \(k \) with \(v \in S \) and at most \(\delta |S| \) edges between \(S \) and \(V \)
Back to the General Question

Definition [Hassidim, Kelner, Nguyen, Onak, 09]
We say that O is a (randomized) (ϵ,k)-partitioning oracle, if given query access to a planar graph $G=(V,E)$, it provides query access to a partition P of V. For a query about $v \in V$, O returns $P[v]$. The partition has the following properties:

- P is a function of the graph and the random bits
- For every $v \in V$, $|P[v]| \leq k$ and $P[v]$ induces a connected graph in G
- $|\{(v,w) \in E : P[v] \neq P[w]\}| \leq \epsilon \cdot |V|$ with prob. $9/10$
Back to the general question

Lemma [Variant of Lemma by Hassidim, Kelner, Nguyen, Onak, 09]
Let G be a planar graph with degree bounded by $D \geq 2$. Let $R = R(\varepsilon, D)$ be any function and let S be a set of $|S| = R$ vertices chosen uniformly at random. Then there is a $k = k(\varepsilon)$ such that there is an $(\varepsilon D, k)$-partitioning oracle that inspects a $D = D_R(\varepsilon, D)$-ball of every vertex in S and with probability $9/10$ returns the partition class (and component) of every vertex in S.
Back to the General Question

Lemma [Newman, S. 2013]

- Let G be any graph with maximum degree D. We can estimate the frequency vector $\text{freq}(G,k)$ up to l_1-error ε by sampling $Q = f(\varepsilon, k)$ vertices uniformly at random, explore their k-discs, and return the relative frequencies of the sampled discs. We call this algorithm $\text{EstimateFrequencies}$.
Back to the General Question

Theorem [Newman, Sohler, STOC 11]

- Let G and H be two hyperfinite (planar) graphs with n vertices and max.
 degree D. Then for every $\varepsilon, 0 < \varepsilon \leq 1$, there is $\lambda = \lambda(\varepsilon, D)$ and $k = (\varepsilon, D)$, such that:

 If $||\text{freq}(G, k) - \text{freq}(H, k)||^1 \leq \lambda$ then G ε-close to H.
Back to the General Question

Outline (first idea)
- Let G and H be two graphs on n vertices with $\text{freq}(G,k) = \text{freq}(H,k)$ for sufficiently large k
- (1) Use (ε,k')-partitioning oracle on G and H resulting in graphs G^* and H^*
- (2) Show that $\text{freq}(G^*,k')=\text{freq}(H^*,k')$
- Wrapup: By removal of at most εn edges we obtain two graphs with the same number of isomorphic connected components

Problem
- There is no reason to expect G^* and H^* to have the same frequency vectors
Back to the General Question

Outline (second idea)

- Use *probabilistic method* to prove that for some choice of permutations of the vertex sets of G and H the partitioning oracle will compute graphs G* and H* with $\text{freq}(G^{*},k{'}^{\prime}) \approx \text{freq}(H^{*},k{'}^{\prime})$
Back to the General Question

Theorem [Newman, Sohler, STOC 11]

- Let G and H be two hyperfinite (planar) graphs with n vertices and max. degree D. Then for every $\varepsilon, 0 < \varepsilon \leq 1$, there is $\lambda = \lambda(\varepsilon, D)$ and $k = (\varepsilon, D)$, such that:

$$\text{If } ||\text{freq}(G,k) - \text{freq}(H,k)||^{1} \leq \lambda \text{ then } G \varepsilon\text{-close to } H.$$

Corollary [Newman, Sohler, STOC 11]

- Every property is (non-uniformly) testable in the class of hyperfinite graphs
- Every hyperfinite graph property is (non-uniformly) testable
Challenges

Expander graphs
- Hyperfinite graphs are the “opposite“ of expander graphs
- Social networks are typically not hyperfinite (small world phenomenon)

Degree bound
- Frequent subgraph analysis requires bounded degree
- Which classes of properties can be tested in graphs with small average degree?

Directed graphs (when edges are seen from one side)
- How to analyze random walks? How to avoid „to get stuck“?
- Testable properties?
Challenges

Query complexity / running time
- The general results have a poor dependence on ε
- Which properties can be tested with polynomial (linear) query complexity (running time)?
- Can planarity be tested in polynomial query complexity?

One-sided vs. Two-sided error
- The general results have two-sided error
- In many applications, one wants a „counter-example“, if the graph does not have a property
- Which properties can be efficiently tested with one-sided error?
Thank you!

Image sources:
[1] TonZ; Image under Creative Commons License