

SFB 876 Verfügbarkeit von Information durch Analyse unter Ressourcenbeschränkung

Coreset and sampling approaches for the analysis of very large data sets – Part II Christian Sohler

European Research Council Established by the European Commission

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Very Large Networks

Social Networks

- Reflect social structures in detail
- <u>Example question:</u> Can we distinguish democratic countries from totalitarian ones by looking at their Facebook structure?

Data size

- GigaByte upto TeraByte (only the graph)
- Data exchange (movies, pictures, etc.) in the Peta-Byte range

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Very Large Networks

Problem

- Such networks are typically too large to be compared
- No efficient algorithm for graph isomorphism
- In order to apply learning algorithms, we need features that describe different aspects of the network structure

Sublinear Algorithms

Observations

- Classical algorithms are too slow to handle very large networks
- In some learning applications we want to be able to handle many features of many large networks

Property Testing

- Study (structural) properties of very large networks via random sampling
- A form of approximation
- Central question: What can we provably learn from the *local structure* of a graph about ist *global structure*?

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Graph Properties

Graph

- Graph G=(V,E), V={1,...,n}
- Bounded max. degree D

Definition(graph property)

- ε-close ε-far
- A graph property is a set of graphs that is closed under isomorphism.

Definition (ɛ-far)

- A graph G=(V,E) is ε-far from a property P, if one has to modify more than εDn edges to obtain a degree bounded graph with property P.
- If a graph is not ε -far from P, it is called ε -close.

Property Testing [Rubinfeld, Sudan, SICOMP 96]

Property Tester for P [Goldreich, Ron, Algorithmica 02]

- Oracle access to graph G=(V,E): Query(i,j) returns i-th edge incident to vertex j or a symbol that this edge does not exist
- Accepts with prob. at least 2/3, if G has property P
- Rejects with prob. at least 2/3, if G is ε -far from P

Quality measures

- Query complexity: maximal number of oracle queries
- Running time

A Simple Example: Connectivity

Connectivity

- Every vertex is connected (has a path) to every vertices
- ϵ -far: There are at least ϵ Dn/2 connected components

Connectivitytester(ɛ) [Goldreich, Ron, Algorithmica 02]

- (1) Sample set S with s=O($1/\epsilon$) vertices uniformly at random from V
- (2) For every vertex from S:
- (3) Perform a BFS until

(a) $4/(\epsilon D)$ vertices have been discovered or

(b) all vertices of a small connected component have been discovered if (b) then reject

(4) accept

Two Main Sampling Approaches

Frequent subgraph analysis*

1. Sample set S of vertices uniformly at random

2. For each vertex in S determine subgraph induced by vertices within distance at most k

3. Decide based on the observed subgraph

* Requires bounded max. degree

Random walks

1. Sample set S of vertices uniformly at random

2. From each vertex in S start a t-step random walk

3. Decide based on the observed subgraph

General Question

Definition

A graph property P is called testable, if there is a q=q(ε,D), such that for every n>0 and every ε, 0< ε ≤1, a property tester Aε,D,n with query complexity q exists.

General question

• Which properties are testable with constant query complexity for constant ϵ ?

Frequent Subgraph Analysis

Frequent Subgraph Analysis1

- 1. Draw sample set $S \subseteq V$, $|S|=s(\epsilon,D)$, uniformly at random
- 2. Let k=k(ε,D)
- 3. Accept, if all k-balls H(k,v) have the studied property
- 4. Reject otherwise

Definition (k-ball)

A k-ball H(k,v) around a root vertex v in a graph G is the subgraph induced by all vertices of distance at most k from v

Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]

- Which properties are testable with constant query complexity, if the input graph is planar?
- Planarity is an example for a larger class of graphs

Simplified General Question

Simplified question [Czumaj, Shapira, Sohler, SICOMP 09]

- Which properties are testable with constant query complexity, if the input graph is planar?
- Planarity is an example for a larger class of graphs

How does planarity help?

- Every degree bounded planar graph can be partitioned into connected components of size O(1/ε²) by removing at most εDn/2 edges
- If a graph is ε-far from P, then it is ε/2-far after the removal of these edges

Simplified General Question

Theorem [Czumaj, Shapira, Sohler, SICOMP 09]

 In the class of planar graphs every graph property that is closed under vertex removal is (non-uniformly) testable.

Proof idea (simplified)

- Use frequent subgraph analysis
- <u>G has P:</u> The tester accepts by closedness under vertex removal
- <u>G is ε -far from P</u>: After removal of ε Dn/2 edges, G has small connected components and is $\varepsilon/2$ -far from P
- Hence, there are many components that do not have property P
- With constant probability a random k-ball contains such a component
- Because of closedness the k-ball does not have P and the tester rejects

What FrequentSubgraphAnalysis1 Cannot Do

PlanarityTesterFirstTry(ϵ ,n)

- (1) Draw s=s(ϵ ,D) k-balls uniformly at random for a k=k(ϵ ,D)
- (2) Accept, if only planar k-balls are drawn and reject, otherwise

What FrequentSubgraphAnalysis1 Cannot Do

PlanarityTesterFirstTry(ϵ ,n)

- (1) Draw s=s(ϵ ,D) k-balls uniformly at random for a k=k(ϵ ,D)
- (2) Accept, if only planar k-balls are drawn and reject, otherwise

Counter example:

 There are classes of graphs, such that every cycle has length Ω(log n) and that are ε-far from planar

Extended Frequent Subgraph Analysis

Frequent Subgraph Analysis II

- 1. Draw sample set $S \subseteq V$, $|S|=s(\varepsilon,D)$, uniformly at random
- 2. Let k=k(ε,D)
- 3. Accept, based on the frequency of the observed k-balls and internal randomness

Observations

- For constant k and D there is only a constant number of non-isomorphic k-balls
- The distribution vector freq(G,k) of the k-balls in a graph G describes the relative frequency of k-balls in G

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]

 Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]

 Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.

Getting some intuition

• We will first try to distinguish expander graphs from planar graphs

Two definitions

- Define the *conductance* of a set of vertices U to be |E(U, V-U)| / |U|.
- A graph is called an *expander graph*, if every set U of vertices with |U| ≤|V|/2 has conductance Ω(1)

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Some intuition

Comparing trees and high girth expander graphs

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Some intuition

Comparing trees and high girth expander graphs

Some intuition

Planar graphs

- Planar graphs can be decomposed into connected components of size at most k by removing at most Dn/(2 \sqrt{k}) edges
- On average such a connected component is incident to O(\sqrt{k}) removed edges and so it has conductance $1/\sqrt{k}$

Expander graphs

• Conductance is $\Omega(1)$

Conclusion

• We can distinguish expander graphs from planar graphs by considering the local conductance

Theorem [Benjamini, Schramm, Shapira, Advances in Mathematics 10]

 Every graph property that is closed under removal of vertices, removal of edges and contraction of edges is (non-uniformly) testable.

Proof idea

- Use an approximation of the frequency vector of k-balls to test, whether the graph is *hyperfinite*, i.e. can be decomposed into small components (note: Every graph in the class above can be decomposed!)
- Continue with ideas of the previous algorithm

Theorem [Hassidim, Kelner, Nguyen, Onak, FOCS 09]

 Every (non-degenerate) hereditary property can be tested in hyperfinite graphs.

New contributions

- Explicit algorithm to compute partition into small components
- Improved query complexity
- Simplified proof

- GlobalPartitioning(k,δ) [Hassidim, Kelner, Nguyen, Onak, 09]
- $\pi = (\pi_1, ..., \pi_n)$ = random permutation of the vertices
- P = Ø

- while G is not empty do
- Let v be the first vertex in G according to π
- **if** there exists a (k,δ) -isolated neighborhood of v in G **then**
 - S = this neighborhood
- else S = {v}
- P = P ∪ {S}
- remove vertices in S from the graph

 (k,δ) -isolated neighborhood of v: Connected set S of size at most k with v \in S and at most $\delta|S|$ edges between S and V

Definition [Hassidim, Kelner, Nguyen, Onak, 09]

- We say that O is a (randomized) (ϵ ,k)-partitioning oracle, if given query access to a planar graph G=(V,E), it provides query access to a partition P of V. For a query about v \in V, O returns P[v]. The partition has the following properties:
- P is a function of the graph and the random bits
- For every $v \in V$, $|P[v]| \le k$ and P[v] induces a connected graph in G
- $|\{(v,w) \in E : P[v] \neq P[w]\}| \le \varepsilon \cdot |V| \text{ with prob. 9/10}$

Lemma [Variant of Lemma by Hassidim, Kelner, Nguyen, Onak, 09]

Let G be a planar graph with degree bounded by D≥2. Let R=R(ϵ ,D) be any function and let S be a set of |S|=R vertices chosen uniformly at random. Then there is a k=k(ϵ) such that there is an (ϵ D,k)-partitioning oracle that inspects a D=D_R(ϵ ,D)-ball of every vertex in S and with probability 9/10 returns the partition class (and component) of every vertex in S.

Lemma [Newman,S. 2013]

Let G be any graph with maximum degree D. We can estimate the frequency vector freq(G,k) upto l₁-error ε by sampling Q=f(ε,k) vertices uniformly at random, explore their k-discs, and return the relative frequencies of the sampled discs. We call this algorithm EstimateFrequencies.

Theorem [Newman, Sohler, STOC 11]

Let G and H be two hyperfinite (planar) graphs with n vertices and max. degree D. Then for every ε , $0 < \varepsilon \le 1$, there is $\lambda = \lambda$ (ε ,D) and k=(ε ,D), such that:

If $\|\text{freq}(G,k) - \text{freq}(H,k)\|^{1} \le \lambda$ then G ε -close to H.

Outline (first idea)

- Let G and H be two graphs on n vertices with freq(G,k) = freq(H,k) for sufficiently large k
- (1) Use (ϵ ,k')-partitioning oracle on G and H resulting in graphs G* and H*
- (2) Show that freq(G*,k')=freq(H*,k')
- Wrapup: By removal of at most en edges we obtain two graphs with the same number of isomorphic connected components

Problem

There is no reason to expect G* and H* to have the same frequency vectors

Outline (second idea)

 Use probabilistic method to prove that for some choice of permutations of the vertex sets of G and H the partitioning oracle will compute graphs G* and H* with freq(G*,k')≈freq(H*,k')

Theorem [Newman, Sohler, STOC 11]

Let G and H be two hyperfinite (planar) graphs with n vertices and max. degree D. Then for every ε , $0 < \varepsilon \le 1$, there is $\lambda = \lambda$ (ε ,D) and k=(ε ,D), such that:

If $||\text{freq}(G,k) - \text{freq}(H,k)||^{1} \le \lambda$ then G ε -close to H.

Corollary [Newman, Sohler, STOC 11]

- Every property is (non-uniformly) testable in the class of hyperfinite graphs
- Every hyperfinite graph property is (non-uniformly) testable

Challenges

Expander graphs

- Hyperfinite graphs are the "opposite" of expander graphs
- Social networks are typically not hyperfinite (small world phenomenon)

Degree bound

- Frequent subgraph analysis requires bounded degree
- Which classes of properties can be tested in graphs with small average degree?

Directed graphs (when edges are seen from one side)

- How to analyze random walks? How to avoid "to get stuck"?
- Testable properties?

Challenges

Query complexity / running time

- The general results have a poor dependence on ϵ
- Which properties can be tested with polynomial (linear) query complexity (running time)?
- Can planarity be tested in polynomial query complexity?

One-sided vs. Two-sided error

- The general results have two-sided error
- In many applications, one wants a "counter-example", if the graph does not have a property
- Which properties can be efficiently tested with one-sided error?

Prof. Dr. Christian Sohler Komplexitätstheorie und effiziente Algorithmen

Thank you!

Image sources:

[1] TonZ; Image under Creative Commons License