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Overview of the Course

• Course #1: Inverse Problems

• Course #2: Recovery Guarantees
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Overview

• Low-complexity Regularization with Gauges

• Performance Guarantees

• Grid-free Regularization
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Figure 3.  The concept of hyperspectral imagery.  Image measurements are made at
many narrow contiguous wavelength bands, resulting in a complete spectrum for each
pixel.

Hyperspectral Data

Most multispectral imagers (e.g., Landsat, SPOT, AVHRR) measure radiation reflected
from a surface at a few wide, separated wavelength bands (Fig. 4).  Most hyperspectral
imagers (Table 1), on the other hand, measure reflected radiation at a series of narrow
and contiguous wavelength bands.  When we look at a spectrum for one pixel in a
hyperspectral image, it looks very much like a spectrum that would be measured in a
spectroscopy laboratory (Fig. 5).  This type of detailed pixel spectrum can provide much
more information about the surface than a multispectral pixel spectrum.
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FIGURE 2.2: Phase transitions for linear inverse problems. [left] Recovery of sparse vectors. The empirical
probability that the `1 minimization problem (2.6) identifies a sparse vector x0 2 R100 given random linear
measurements z0 = Ax0. [right] Recovery of low-rank matrices. The empirical probability that the S1
minimization problem (2.7) identifies a low-rank matrix X0 2 R30£30 given random linear measurements
z0 =A (X0). In each panel, the colormap indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the empirical phase transition.

fixed dimensions. This calculation gives the exact (asymptotic) location of the phase transition for the S1

minimization problem (2.7) with random measurements.
To underscore these achievements, we have performed some computer experiments to compare the

theoretical and empirical phase transitions. Figure 2.2[left] shows the performance of (2.6) for identifying
a sparse vector in R100; Figure 2.2[right] shows the performance of (2.7) for identifying a low-rank matrix
in R30£30. In each case, the colormap indicates the empirical probability of success over the randomness in
the measurement operator. The empirical 5%, 50%, and 95% success isoclines are determined from the
data. We also draft the theoretical phase transition curve, promised by Theorem II, where the number m of
measurements equals the statistical dimension of the appropriate descent cone, which we compute using the
formulas from Sections 4.5 and 4.6. See Appendix A for the experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(

p
d) values of m, as promised.

Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well. See the discussion after Theorem 7.1 for more information.

2.4. Demixing problems. In a demixing problem [MT12], we observe a superposition of two structured
vectors, and we aim to extract the two constituents from the mixture. More precisely, suppose that we measure
a vector z0 2Rd of the form

z0 = x0 +U y0 (2.8)
where x0, y0 2 Rd are unknown and U 2 Rd£d is a known orthogonal matrix. If we wish to identify the pair
(x0, y0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

To solve the demixing problem (2.8), we describe a convex programming technique proposed in [MT12].
Suppose that f and g are proper convex functions on Rd that promote the structures we expect to find in x0
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�! Similar results for || · ||1,2, || · ||⇤, || · ||1.

�! Not using RIP technics (non-uniform result on x0).
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Overview

• Low-complexity Regularization with Gauges

• Performance Guarantees

• Grid-free Regularization
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NWhen N ! +1, support is not stable:

||⌘0,Ic ||1 �!
N!+1

c > 1.

Intuition: spikes wants to move laterally.

1

c

||⌘0,Ic ||1

StableUnstable

Extension of `1: total variation

Discrete measure: m
x,a

=
P

i

a
i

�
xi .

One has ||m
x,a

||TV = ||a||1

�! Use Radon measures m 2 M(T), T = R/Z.

||m||TV = sup
||g||161

Z

T
g(x) dm(x)

Support Instability and Measures



Sparse Measure Regularization
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8
<
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Acquisition operator:

Total-variation over measures regularization:

min
m2M(T)

1

2
||�(m)� y||2 + �||m||TV

�! Infinite dimensional convex program.

�! If dim(Im(�)) < +1, dual is finite dimensional.

�! If � is a filtering, re-cast dual as SDP program.

�(m)(x) =

Z

T
'(x, x0)dm(x0) where ' 2 C

2(T⇥ T)

Sparse Measure Regularization

Measurements: y = �(m0) + w where

8
<

:

m0 2 M(T),
� : M(T) ! L2(T),
w 2 L2(T).
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2 ||�za� y||2 + �||a||1

Measures: min
m2M

1
2 ||�m� y||2 + �||m||TV

On a grid z:

⌘F = �⇤�⇤,+
I sign(a0,I) ⌘

V

= �⇤�+,⇤
x0

�
sign(a0), 0

�⇤

�1

+1

For m0 = mz,a0 , supp(m0) = x0, supp(a0) = I:

where �
x

(a, b) =
P

i

a

i

'(·, x
i

) + b

i

'

0(·, x
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)
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(holds for ||w|| small enough and � ⇠ ||w||)
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If 8 j /2 I, |⌘F (xj)| < 1,

then supp(a�) = supp(a0)

Theorem: [Fuchs 2004]
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(holds for ||w|| small enough and � ⇠ ||w||)

min
a2RN

1
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'(·, x
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then m
�

= m
x�,a� with

||x� � x0||1 = O(||w||)

Theorem: [Duval-Peyré 2013]
If 8 t /2 x0, |⌘V (t)| < 1,

Fuchs vs. Vanishing Pre-Certificates

If 8 j /2 I, |⌘F (xj)| < 1,

then supp(a�) = supp(a0)

Theorem: [Fuchs 2004]

⌘V

zi

⌘F



Numerical Illustration

 

�1

+1
⌘V⌘F

 

 

Zoom

+1

Ideal low-pass filter: '(x, x

0
) =

sin((2fc+1)⇡(x�x

0))
sin(⇡(x�x

0)) , f

c

= 6.

⌘F

⌘V



Solution path � 7! a�

�

Numerical Illustration

 

�1

+1
⌘V⌘F

 

 

Zoom

+1

Ideal low-pass filter: '(x, x

0
) =

sin((2fc+1)⇡(x�x

0))
sin(⇡(x�x

0)) , f

c

= 6.

⌘F

⌘V



Solution path � 7! a�

�
Theorem: [Duval-Peyré 2013]

Discrete ! continuous:

If ⌘V is valid, then a�

neighbors around supp(m0).

is supported on pairs of

(holds for � ⇠ ||w|| small enough.
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– Approximate model recovery T
x

? ⇡ T
x0 .

Gauges: encode linear models as singular points.

Performance measures

L2
error

model

di↵erent CS guarantees

Specific certificate:
⌘0, ⌘F , ⌘V , . . .

(e.g. grid-free recovery)

– CS performance with arbitrary gauges.

Conclusion

Open problems:


