Low Complexity
Regularization of Inverse Problems

Cours \#2
Recovery Guarantees

Gabriel Peyré
\qquad

Overview of the Course

- Course \#1: Inverse Problems
- Course \#2: Recovery Guarantees
- Course \#3: Proximal Splitting Methods

Overview

- Low-complexity Regularization with Gauges
- Performance Guarantees
- Grid-free Regularization

Inverse Problem Regularization

Observations: $y=\Phi x_{0}+w \in \mathbb{R}^{P}$.
Estimator: $x(y)$ depends only on

Observations: $y=\Phi x_{0}+w \in \mathbb{R}^{P}$.
Estimator: $x(y)$ depends only on

Example: variational methods

$$
x(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \overbrace{\text { Data fidelity }}^{\frac{1}{2}\|y-\Phi x\|^{2}}+\lambda \underbrace{J(x)}_{\text {Regularity }}
$$

Inverse Problem Regularization

Observations: $y=\Phi x_{0}+w \in \mathbb{R}^{P}$.
Estimator: $x(y)$ depends only on

Example: variational methods

$$
x(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \frac{\overbrace{\frac{1}{2}\|y-\Phi x\|^{2}}^{\text {Data fidelity }}+\lambda \underbrace{J(x)}_{\text {Regularity }}}{\text { Des }}
$$

Choice of λ : tradeoff

Inverse Problem Regularization

Observations: $y=\Phi x_{0}+w \in \mathbb{R}^{P}$.
Estimator: $x(y)$ depends only on

Example: variational methods

$$
x(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \underbrace{\frac{1}{2}\|y-\Phi x\|^{2}}_{\text {Data fidelity }}+\lambda \underbrace{J(x)}_{\text {Regularity }}
$$

Choice of λ : tradeoff

No noise: $\lambda \rightarrow 0^{+}$, minimize $\quad x^{\star} \in \underset{x \in \mathbb{R}^{Q}, \mathcal{K} x=y}{\operatorname{argmin}} J(x)$

Inverse Problem Regularization

Observations: $y=\Phi x_{0}+w \in \mathbb{R}^{P}$.
Estimator: $x(y)$ depends only on observations y parameter λ Example: variational methods

$$
x(y) \in \underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \overbrace{\text { Data fidelity }}^{\frac{1}{2}\|y-\Phi x\|^{2}}+\lambda \underbrace{J(x)}_{\text {Regularity }}
$$

Choice of λ : tradeoff

No noise: $\lambda \rightarrow 0^{+}$, minimize $\quad x^{\star} \in \underset{x \in \mathbb{R} Q, \mathcal{K} x=y}{\operatorname{argmin}} J(x)$ This course: $<$ Performance analysis.

Union of Linear Models for Data Processing

Union of models: $T \in \mathcal{T}$ linear spaces.

Synthesis

sparsity:

Union of Linear Models for Data Processing

Union of models: $T \in \mathcal{T}$ linear spaces.

Synthesis

sparsity:

Structured sparsity:

Union of Linear Models for Data Processing

Union of models: $T \in \mathcal{T}$ linear spaces.

Union of Linear Models for Data Processing

Union of models: $T \in \mathcal{T}$ linear spaces.

Analysis sparsity:

Multi-spectral imaging:

$$
x_{i, \cdot}=\sum_{j=1}^{r} A_{i, j} S_{j, .}
$$

Image Ψx

Gradient $D^{*} x$

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$

$$
\begin{aligned}
& \text { Convex } \\
& \forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)
\end{aligned}
$$

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+} \quad \begin{aligned} & \text { Convex } \\ & \forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)\end{aligned}$
Piecewise regular ball \Leftrightarrow Union of linear models $(T)_{T \in \mathcal{T}}$

$\mathcal{T}=$ sparse vectors

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+} \quad \begin{aligned} & \text { Convex } \\ & \forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)\end{aligned}$
Piecewise regular ball \Leftrightarrow Union of linear models $(T)_{T \in \mathcal{T}}$

$\mathcal{T}=$ sparse vectors

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$

$$
\begin{aligned}
& \text { Convex } \\
& \forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)
\end{aligned}
$$

Piecewise regular ball \Leftrightarrow Union of linear models $(T)_{T \in \mathcal{T}}$

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$
Convex
$\forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)$
Piecewise regular ball \Leftrightarrow Union of linear models $(T)_{T \in \mathcal{T}}$

Gauges for Union of Linear Models

Gauge: $\quad J: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$

Convex
$\forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)$

$$
\forall \alpha \in \mathbb{R}^{+}, J(\alpha x)=\alpha J(x)
$$

Piecewise regular ball \Leftrightarrow Union of linear models $(T)_{T \in \mathcal{T}}$

$\mathcal{T}=$ block sparse vectors

$J(x)=\|x\|_{*}$

$\mathcal{T}=$ low-rank matrices
 $\mathcal{T}=$ antisparse vectors

Subdifferentials and Models

$$
\partial J(x)=\{\eta \backslash \forall y, J(y) \geqslant J(x)+\langle\eta, y-x\rangle\}
$$

Subdifferentials and Models

$$
\partial J(x)=\{\eta \backslash \forall y, J(y) \geqslant J(x)+\langle\eta, y-x\rangle\}
$$

$$
\text { Example: } J(x)=\|x\|_{1}
$$

$$
\partial\|x\|_{1}=\left\{\eta \backslash \begin{array}{l}
\operatorname{supp}(\eta)=I, \\
\forall j \notin I,\left|\eta_{j}\right| \leqslant 1
\end{array}\right\}
$$

$$
I=\operatorname{supp}(x)=\left\{i \backslash x_{i} \neq 0\right\}
$$

Subdifferentials and Models

$$
\partial J(x)=\{\eta \backslash \forall y, J(y) \geqslant J(x)+\langle\eta, y-x\rangle\}
$$

$$
\text { Example: } J(x)=\|x\|_{1}
$$

$$
\begin{aligned}
& \quad \partial\|x\|_{1}=\left\{\eta \backslash \begin{array}{l}
\operatorname{supp}(\eta)=I, \\
\forall j \notin I,\left|\eta_{j}\right| \leqslant 1
\end{array}\right\} \\
& I=\operatorname{supp}(x)=\left\{i \backslash x_{i} \neq 0\right\} \\
& T_{x}=\{\eta \backslash \operatorname{supp}(\eta)=I\}
\end{aligned}
$$

Definition: $\quad T_{x}=\operatorname{VectHull}(\partial J(x))^{\perp}$

Subdifferentials and Models

$\partial J(x)=\{\eta \backslash \forall y, J(y) \geqslant J(x)+\langle\eta, y-x\rangle\}$
Example: $J(x)=\|x\|_{1}$

$$
\begin{aligned}
& \quad \partial\|x\|_{1}=\left\{\eta \backslash \begin{array}{l}
\operatorname{supp}(\eta)=I, \\
\forall j \notin I,\left|\eta_{j}\right| \leqslant 1
\end{array}\right\} \\
& I=\operatorname{supp}(x)=\left\{i \backslash x_{i} \neq 0\right\} \\
& T_{x}=\{\eta \backslash \operatorname{supp}(\eta)=I\} \\
& e_{x}=\operatorname{sign}(x)
\end{aligned}
$$

Definition: $\quad T_{x}=\operatorname{VectHull}(\partial J(x))^{\perp}$

$$
\eta \in \partial J(x) \quad \Longrightarrow \quad \operatorname{Proj}_{T_{x}}(\eta)=e_{x}
$$

$$
\begin{array}{ll}
\ell^{1} \text { sparsity: } J(x)=\|x\|_{1} & \\
\quad e_{x}=\operatorname{sign}(x) & T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
\end{array}
$$

ℓ^{1} sparsity: $J(x)=\|x\|_{1}$

$$
e_{x}=\operatorname{sign}(x) \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Structured sparsity: $J(x)=\sum_{b}\left\|x_{b}\right\| \quad \mathcal{N}(a)=a /\|a\|$

$$
e_{x}=\left(\mathcal{N}\left(x_{b}\right)\right)_{b \in \mathcal{B}} \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Examples

ℓ^{1} sparsity: $J(x)=\|x\|_{1}$

$$
e_{x}=\operatorname{sign}(x) \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Structured sparsity: $J(x)=\sum_{b}\left\|x_{b}\right\| \quad \mathcal{N}(a)=a /\|a\|$

$$
e_{x}=\left(\mathcal{N}\left(x_{b}\right)\right)_{b \in \mathcal{B}} \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Nuclear norm: $J(x)=\|x\|_{*} \quad S V D: \quad x=U \Lambda V^{*}$

$$
e_{x}=U V^{*} \quad T_{x}=\left\{U A+B V^{*} \backslash(A, B) \in\left(\mathbb{R}^{n \times n}\right)^{2}\right\}
$$

Examples

ℓ^{1} sparsity: $J(x)=\|x\|_{1}$

$$
e_{x}=\operatorname{sign}(x) \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Structured sparsity: $J(x)=\sum_{b}\left\|x_{b}\right\| \quad \mathcal{N}(a)=a /\|a\|$

$$
e_{x}=\left(\mathcal{N}\left(x_{b}\right)\right)_{b \in \mathcal{B}} \quad T_{x}=\{z \backslash \operatorname{supp}(z) \subset \operatorname{supp}(x)\}
$$

Nuclear norm: $J(x)=\|x\|_{*} \quad S V D: \quad x=U \Lambda V^{*}$

$$
e_{x}=U V^{*} \quad T_{x}=\left\{U A+B V^{*} \backslash(A, B) \in\left(\mathbb{R}^{n \times n}\right)^{2}\right\}
$$

Anti-sparsity: $J(x)=\|x\|_{\infty} \quad I=\left\{i \backslash\left|x_{i}\right|=\|x\|_{\infty}\right\}$

$$
e_{x}=|I|^{-1} \operatorname{sign}(x) \quad T_{x}=\left\{y \backslash y_{I} \propto \operatorname{sign}\left(x_{I}\right)\right\}
$$

Overview

- Low-complexity Regularization with Gauges
- Performance Guarantees
- Grid-free Regularization

Dual Certificates

Noiseless recovery: $\min _{\Phi x=\Phi x_{0}} J(x)$

$\left(\mathcal{P}_{0}\right)$

Dual Certificates

Noiseless recovery: $\min _{\Phi x=\Phi x_{0}} J(x) \quad\left(\mathcal{P}_{0}\right)>\eta_{n} \partial J\left(x_{0}\right)$

Proposition:
 x_{0} solution of $\left(\mathcal{P}_{0}\right) \Longleftrightarrow \exists \eta \in \mathcal{D}\left(x_{0}\right)$

Dual certificates:
$\mathcal{D}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \partial J\left(x_{0}\right)$

Dual Certificates

Noiseless recovery:

$$
\min _{\Phi x=\Phi x_{0}} J(x)
$$

Dual certificates:

$$
\mathcal{D}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \partial J\left(x_{0}\right)
$$

Proof: $\quad\left(\mathcal{P}_{0}\right) \Longleftrightarrow \min _{\delta \in \operatorname{ker}(\Phi)} J\left(x_{0}+\delta\right)$

$$
\forall(\eta, \delta) \in \partial J\left(x_{0}\right) \times \operatorname{ker}(\Phi), \quad J\left(x_{0}+\delta\right) \geqslant J\left(x_{0}\right)+\langle\delta, \eta\rangle
$$

$\eta \in \operatorname{Im}\left(\Phi^{*}\right) \quad \Longrightarrow \quad\langle\delta, \eta\rangle=0 \quad \Longrightarrow \quad x_{0}$ solution. x_{0} solution $\quad \Longrightarrow \quad \forall \delta,\langle\delta, \eta\rangle \leqslant 0 \quad \Longrightarrow \quad \eta \in \operatorname{ker}(\Phi)^{\perp}$.

Dual Certificates and L2 Stability

Tight dual certificates:

$$
\overline{\mathcal{D}}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \operatorname{ri}\left(\partial J\left(x_{0}\right)\right)
$$

$\operatorname{ri}(E)=$ relative interior of E $=$ interior for the topology of $\operatorname{aff}(E)$

Dual Certificates and L2 Stability

Tight dual certificates:

$$
\overline{\mathcal{D}}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \operatorname{ri}\left(\partial J\left(x_{0}\right)\right)
$$

$\operatorname{ri}(E)=$ relative interior of E
$=$ interior for the topology of $\operatorname{aff}(E)$

Theorem:
[Fadili et al. 2013]
If $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$, for $\lambda \sim\|w\|$ one has $\left\|x^{\star}-x_{0}\right\|=O(\|w\|)$

Dual Certificates and L2 Stability

Tight dual certificates:

$$
\overline{\mathcal{D}}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \operatorname{ri}\left(\partial J\left(x_{0}\right)\right)
$$

$\operatorname{ri}(E)=$ relative interior of E
$=$ interior for the topology of $\operatorname{aff}(E)$

Theorem:

[Fadili et al. 2013]
If $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$, for $\lambda \sim\|w\|$ one has $\left\|x^{\star}-x_{0}\right\|=O(\|w\|)$
[Grassmair, Haltmeier, Scherzer 2010]: $J=\|\cdot\|_{1}$.
[Grassmair 2012]: $J\left(x^{\star}-x_{0}\right)=O(\|w\|)$.

Dual Certificates and L2 Stability

Tight dual certificates:

$$
\overline{\mathcal{D}}\left(x_{0}\right)=\operatorname{Im}\left(\Phi^{*}\right) \cap \operatorname{ri}\left(\partial J\left(x_{0}\right)\right)
$$

$\operatorname{ri}(E)=$ relative interior of E
$=$ interior for the topology of $\operatorname{aff}(E)$

Theorem:

[Fadili et al. 2013]
If $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$, for $\lambda \sim\|w\|$ one has $\left\|x^{\star}-x_{0}\right\|=O(\|w\|)$
[Grassmair, Haltmeier, Scherzer 2010]: $J=\|\cdot\|_{1}$.
[Grassmair 2012]: $J\left(x^{\star}-x_{0}\right)=O(\|w\|)$.
\longrightarrow The constants depend on $N \ldots$

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If
[Rudelson, Vershynin 2006]
[Chandrasekaran et al. 2011]

$$
P \geqslant 2 s \log (N / s)
$$

Then $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011]

$$
P \geqslant 2 s \log (N / s)
$$

Then $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Low-rank matrices: $J=\|\cdot\|_{*}$.
Theorem: Let $r=\operatorname{rank}\left(x_{0}\right)$. If
[Chandrasekaran et al. 2011]

$$
P \geqslant 3 r\left(N_{1}+N_{2}-r\right)
$$

$$
x_{0} \in \mathbb{R}^{N_{1} \times N_{2}}
$$

Then $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011]

$$
P \geqslant 2 s \log (N / s)
$$

Then $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Low-rank matrices: $J=\|\cdot\|_{*}$.
Theorem: Let $r=\operatorname{rank}\left(x_{0}\right)$. If
[Chandrasekaran et al. 2011]

$$
P \geqslant 3 r\left(N_{1}+N_{2}-r\right)
$$

$$
x_{0} \in \mathbb{R}^{N_{1} \times N_{2}}
$$

Then $\exists \eta \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.
\longrightarrow Similar results for $\|\cdot\|_{1,2},\|\cdot\|_{\infty}$.

Phase Transitions

From [Amelunxen et al. 20013]

Minimal-norm Certificate

$$
\eta \in \mathcal{D}\left(x_{0}\right) \quad \Longrightarrow \quad \begin{cases}\eta=\Phi^{*} q & T=T_{x_{0}} \\ \operatorname{Proj}_{T}(\eta)=e & e=e_{x_{0}}\end{cases}
$$

Minimal-norm Certificate

$$
\eta \in \mathcal{D}\left(x_{0}\right) \quad \Longrightarrow \quad \begin{cases}\eta=\Phi^{*} q & T=T_{x_{0}} \\ \operatorname{Proj}_{T}(\eta)=e & e=e_{x_{0}}\end{cases}
$$

Minimal-norm pre-certificate: $\quad \eta_{0}=\underset{\eta=\Phi^{*} q, \eta_{T}=e}{\operatorname{argmin}}\|q\|$

Minimal-norm Certificate

$$
\eta \in \mathcal{D}\left(x_{0}\right) \quad \Longrightarrow \quad \begin{cases}\eta=\Phi^{*} q & T=T_{x_{0}} \\ \operatorname{Proj}_{T}(\eta)=e & e=e_{x_{0}}\end{cases}
$$

Minimal-norm pre-certificate: $\quad \eta_{0}=\underset{\eta=\Phi^{*} q, \eta_{T}=e}{\operatorname{argmin}}\|q\|$

$$
\begin{array}{l|l}
\text { Proposition: One has } \quad \eta_{0}=\left(\Phi_{T}^{+} \Phi\right)^{*} e & \Phi_{T}=\Phi \circ \operatorname{Proj}_{T}
\end{array}
$$

Minimal-norm Certificate

$$
\eta \in \mathcal{D}\left(x_{0}\right) \quad \Longrightarrow \quad\left\{\begin{array}{ll}
\eta=\Phi^{*} q & T=T_{x_{0}} \\
\operatorname{Proj}_{T}(\eta)=e
\end{array} \quad \begin{array}{l}
\\
\operatorname{Pr}_{x_{0}}
\end{array}\right.
$$

Minimal-norm pre-certificate: $\quad \eta_{0}=\underset{\eta=\Phi^{*} q, \eta_{T}=e}{\operatorname{argmin}}\|q\|$
Proposition: One has $\quad \eta_{0}=\left(\Phi_{T}^{+} \Phi\right)^{*} e \quad \Phi_{T}=\Phi \circ \operatorname{Proj}_{T}$

Theorem: If $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ and $\lambda \sim\|w\|$,
the unique solution x^{\star} of $\mathcal{P}_{\lambda}(y)$ for $y=\Phi x_{0}+w$ satisfies

$$
T_{x^{\star}}=T_{x_{0}} \quad \text { and } \quad\left\|x^{\star}-x_{0}\right\|=O(\|w\|) \quad \text { [Vaiter et al. 2013] }
$$

Minimal-norm Certificate

$$
\eta \in \mathcal{D}\left(x_{0}\right) \quad \Longrightarrow \quad\left\{\begin{array}{ll}
\eta=\Phi^{*} q & T=T_{x_{0}} \\
\operatorname{Proj}_{T}(\eta)=e
\end{array} \quad \begin{array}{l}
\\
\operatorname{Pr}_{x_{0}}
\end{array}\right.
$$

Minimal-norm pre-certificate: $\quad \eta_{0}=\underset{\eta=\Phi^{*} q, \eta_{T}=e}{\operatorname{argmin}}\|q\|$
Proposition: One has $\quad \eta_{0}=\left(\Phi_{T}^{+} \Phi\right)^{*} e \quad \Phi_{T}=\Phi \circ \operatorname{Proj}_{T}$

Theorem: If $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ and $\lambda \sim\|w\|$,
the unique solution x^{\star} of $\mathcal{P}_{\lambda}(y)$ for $y=\Phi x_{0}+w$ satisfies

$$
T_{x^{\star}}=T_{x_{0}} \quad \text { and } \quad\left\|x^{\star}-x_{0}\right\|=O(\|w\|) \quad \text { [Vaiter et al. 2013] }
$$

[Fuchs 2004]: $J=\|\cdot\|_{1} . \quad\left[\right.$ Vaiter et al. 2011]: $J=\left\|D^{*} \cdot\right\|_{1}$. [Bach 2008]: $J=\|\cdot\|_{1,2}$ and $J=\|\cdot\|_{*}$.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d.
Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Wainwright 2009]
[Dossal et al. 2011]

$$
P>2 s \log (N)
$$

Then $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Wainwright 2009]
[Dossal et al. 2011]

$$
P>2 s \log (N)
$$

Then $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Phase
transitions:

$$
\begin{gathered}
L^{2} \text { stability } \\
P \sim 2 s \log (N / s)
\end{gathered}
$$

Model stability

$$
P \sim 2 s \log (N)
$$

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Wainwright 2009]
[Dossal et al. 2011]

$$
P>2 s \log (N)
$$

Then $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Phase
transitions:
L^{2} stability $P \sim 2 s \log (N / s)$

Model stability
$P \sim 2 s \log (N)$
\longrightarrow Similar results for $\|\cdot\|_{1,2},\|\cdot\|_{*},\|\cdot\|_{\infty}$.

Compressed Sensing Setting

Random matrix: $\quad \Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i, j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J=\|\cdot\|_{1}$.

Theorem: Let $s=\left\|x_{0}\right\|_{0}$. If

[Wainwright 2009]
[Dossal et al. 2011]

$$
P>2 s \log (N)
$$

Then $\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right)$ with high probability on Φ.

Phase
transitions:
L^{2} stability

$$
P \sim 2 s \log (N / s)
$$

Model stability

$$
P \sim 2 s \log (N)
$$

\longrightarrow Similar results for $\|\cdot\|_{1,2},\|\cdot\|_{*},\|\cdot\|_{\infty}$.
\longrightarrow Not using RIP technics (non-uniform result on x_{0}).

1-D Sparse Spikes Deconvolution

$$
\begin{aligned}
& \Phi x=\sum_{i} x_{i} \varphi(\cdot-\Delta i) \\
& J(x)=\|x\|_{1}
\end{aligned}
$$

Increasing Δ :
\rightarrow reduces correlation.
\rightarrow reduces resolution.

1-D Sparse Spikes Deconvolution

$$
\begin{aligned}
& \Phi x=\sum_{i} x_{i} \varphi(\cdot-\Delta i) \\
& J(x)=\|x\|_{1}
\end{aligned}
$$

Increasing Δ :
\rightarrow reduces correlation.
\rightarrow reduces resolution.

$$
\begin{gathered}
I=\left\{j \backslash x_{0}(j) \neq 0\right\} \\
\left\|\eta_{0, I^{c}}\right\|_{\infty}<1 \\
\stackrel{\Longleftrightarrow}{\Longleftrightarrow} \\
\eta_{0} \in \overline{\mathcal{D}}\left(x_{0}\right) \\
\quad \Longleftrightarrow \\
\text { support recovery. }
\end{gathered}
$$

Overview

- Low-complexity Regularization with Gauges
- Performance Guarantees
- Grid-free Regularization

Support Instability and Measures

When $N \rightarrow+\infty$, support is not stable:

$$
\left\|\eta_{0, I^{c}}\right\|_{\infty} \underset{N \rightarrow+\infty}{ } c>1
$$

Support Instability and Measures

When $N \rightarrow+\infty$, support is not stable:

$$
\left\|\eta_{0, I^{c}}\right\|_{\infty} \underset{N \rightarrow+\infty}{\longrightarrow} c>1
$$

Intuition: spikes wants to move laterally.

\longrightarrow Use Radon measures $m \in \mathcal{M}(\mathbb{T}), \mathbb{T}=\mathbb{R} / \mathbb{Z}$.

Support Instability and Measures

When $N \rightarrow+\infty$, support is not stable:

$$
\left\|\eta_{0, I^{c}}\right\|_{\infty} \underset{N \rightarrow+\infty}{\longrightarrow} c>1
$$

Intuition: spikes wants to move laterally. \longrightarrow Use Radon measures $m \in \mathcal{M}(\mathbb{T}), \mathbb{T}=\mathbb{R} / \mathbb{Z}$.

Extension of ℓ^{1} : total variation

$$
\|m\|_{\mathrm{TV}}=\sup _{\|g\|_{\infty} \leqslant 1} \int_{\mathbb{T}} g(x) \mathrm{d} m(x)
$$

Discrete measure: $m_{x, a}=\sum_{i} a_{i} \delta_{x_{i}}$.
One has $\left\|m_{x, a}\right\|_{\mathrm{TV}}=\|a\|_{1}$

Sparse Measure Regularization

Measurements: $y=\Phi\left(m_{0}\right)+w$ where

$$
\left\{\begin{array}{l}
m_{0} \in \mathcal{M}(\mathbb{T}) \\
\Phi: \mathcal{M}(\mathbb{T}) \rightarrow \mathrm{L}^{2}(\mathbb{T}) \\
w \in \mathrm{~L}^{2}(\mathbb{T})
\end{array}\right.
$$

Sparse Measure Regularization

Measurements: $y=\Phi\left(m_{0}\right)+w$ where $\left\{\begin{array}{l}m_{0} \in \mathcal{M}(\mathbb{T}), \\ \Phi: \mathcal{M}(\mathbb{T}) \rightarrow \mathrm{L}^{2}(\mathbb{T}), \\ w \in \mathrm{~L}^{2}(\mathbb{T}) .\end{array}\right.$
Acquisition operator:

$$
\Phi(m)(x)=\int_{\mathbb{T}} \varphi\left(x, x^{\prime}\right) \mathrm{d} m\left(x^{\prime}\right) \quad \text { where } \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T})
$$

Sparse Measure Regularization

Measurements: $y=\Phi\left(m_{0}\right)+w$ where $\left\{\begin{array}{l}m_{0} \in \mathcal{M}(\mathbb{T}), \\ \Phi: \mathcal{M}(\mathbb{T}) \rightarrow \mathrm{L}^{2}(\mathbb{T}), \\ w \in \mathrm{~L}^{2}(\mathbb{T}) .\end{array}\right.$
Acquisition operator:

$$
\Phi(m)(x)=\int_{\mathbb{T}} \varphi\left(x, x^{\prime}\right) \mathrm{d} m\left(x^{\prime}\right) \quad \text { where } \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T})
$$

Total-variation over measures regularization:

$$
\min _{m \in \mathcal{M}(\mathbb{T})} \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

Sparse Measure Regularization

Measurements: $y=\Phi\left(m_{0}\right)+w$ where $\left\{\begin{array}{l}m_{0} \in \mathcal{M}(\mathbb{T}), \\ \Phi: \mathcal{M}(\mathbb{T}) \rightarrow \mathrm{L}^{2}(\mathbb{T}), \\ w \in \mathrm{~L}^{2}(\mathbb{T}) .\end{array}\right.$
Acquisition operator:

$$
\Phi(m)(x)=\int_{\mathbb{T}} \varphi\left(x, x^{\prime}\right) \mathrm{d} m\left(x^{\prime}\right) \quad \text { where } \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T})
$$

Total-variation over measures regularization:

$$
\min _{m \in \mathcal{M}(\mathbb{T})} \frac{1}{2}\|\Phi(m)-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

\longrightarrow Infinite dimensional convex program.
$\longrightarrow \operatorname{If} \operatorname{dim}(\operatorname{Im}(\Phi))<+\infty$, dual is finite dimensional.
\longrightarrow If Φ is a filtering, re-cast dual as SDP program.

Fuchs vs. Vanishing Pre-Certificates

Measures:

Fuchs vs. Vanishing Pre-Certificates

Measures:

$$
\min _{m \in \mathcal{M}} \frac{1}{2}\|\Phi m-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

On a grid $z: \min _{a \in \mathbb{R}^{N}} \frac{1}{2}\left\|\Phi_{z} a-y\right\|^{2}+\lambda\|a\|_{1}$

Fuchs vs. Vanishing Pre-Certificates

Measures:

$$
\min _{m \in \mathcal{M}} \frac{1}{2}\|\Phi m-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

On a grid z :

$$
\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\left\|\Phi_{z} a-y\right\|^{2}+\lambda\|a\|_{1}
$$

For $m_{0}=m_{z, a_{0}}, \operatorname{supp}\left(m_{0}\right)=x_{0}, \operatorname{supp}\left(a_{0}\right)=I$:

$$
\eta_{F}=\Phi^{*} \Phi_{I}^{*,+} \operatorname{sign}\left(a_{0, I}\right)
$$

Fuchs vs. Vanishing Pre-Certificates

Measures:

$$
\min _{m \in \mathcal{M}} \frac{1}{2}\|\Phi m-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

On a grid z :

$$
\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\left\|\Phi_{z} a-y\right\|^{2}+\lambda\|a\|_{1}
$$

For $m_{0}=m_{z, a_{0}}, \operatorname{supp}\left(m_{0}\right)=x_{0}, \operatorname{supp}\left(a_{0}\right)=I$:

$$
\begin{array}{r}
\eta_{F}=\Phi^{*} \Phi_{I}^{*,+} \operatorname{sign}\left(a_{0, I}\right) \\
\text { where } \Gamma_{x}(a, b)=\sum_{i} a_{i} \varphi\left(\cdot, x_{i}\right)+b_{i} \varphi^{\prime}\left(\cdot, x_{i}\right)
\end{array}
$$

Fuchs vs. Vanishing Pre-Certificates

Measures:

$$
\min _{m \in \mathcal{M}} \frac{1}{2}\|\Phi m-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

On a grid z :

$$
\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\left\|\Phi_{z} a-y\right\|^{2}+\lambda\|a\|_{1}
$$

For $m_{0}=m_{z, a_{0}}, \operatorname{supp}\left(m_{0}\right)=x_{0}, \operatorname{supp}\left(a_{0}\right)=I$:

$$
\eta_{F}=\Phi^{*} \Phi_{I}^{*,+} \operatorname{sign}\left(a_{0, I}\right) \quad \mid \quad \eta_{V}=\Phi^{*} \Gamma_{x_{0}}^{+, *}\left(\operatorname{sign}\left(a_{0}\right), 0\right)^{*}
$$

where $\Gamma_{x}(a, b)=\sum_{i} a_{i} \varphi\left(\cdot, x_{i}\right)+b_{i} \varphi^{\prime}\left(\cdot, x_{i}\right)$
Theorem: [Fuchs 2004]

$$
\text { If } \forall j \notin I,\left|\eta_{F}\left(x_{j}\right)\right|<1,
$$

then $\operatorname{supp}\left(a_{\lambda}\right)=\operatorname{supp}\left(a_{0}\right)$

(holds for $\|w\|$ small enough and $\lambda \sim\|w\|$)

Fuchs vs. Vanishing Pre-Certificates

Measures:

$$
\min _{m \in \mathcal{M}} \frac{1}{2}\|\Phi m-y\|^{2}+\lambda\|m\|_{\mathrm{TV}}
$$

On a grid z :

$$
\min _{a \in \mathbb{R}^{N}} \frac{1}{2}\left\|\Phi_{z} a-y\right\|^{2}+\lambda\|a\|_{1}
$$

For $m_{0}=m_{z, a_{0}}, \operatorname{supp}\left(m_{0}\right)=x_{0}, \operatorname{supp}\left(a_{0}\right)=I$:

$$
\eta_{F}=\Phi^{*} \Phi_{I}^{*,+} \operatorname{sign}\left(a_{0, I}\right) \quad \eta_{V}=\Phi^{*} \Gamma_{x_{0}}^{+, *}\left(\operatorname{sign}\left(a_{0}\right), 0\right)^{*}
$$

where $\Gamma_{x}(a, b)=\sum_{i} a_{i} \varphi\left(\cdot, x_{i}\right)+b_{i} \varphi^{\prime}\left(\cdot, x_{i}\right)$

Theorem: [Fuchs 2004]

$$
\text { If } \forall j \notin I,\left|\eta_{F}\left(x_{j}\right)\right|<1,
$$

then $\operatorname{supp}\left(a_{\lambda}\right)=\operatorname{supp}\left(a_{0}\right)$

Theorem: [Duval-Peyré 2013] If $\forall t \notin x_{0},\left|\eta_{V}(t)\right|<1$, then $m_{\lambda}=m_{x_{\lambda}, a_{\lambda}}$ with

$$
\left\|x_{\lambda}-x_{0}\right\|_{\infty}=O(\|w\|)
$$ (holds for $\|w\|$ small enough and $\lambda \sim\|w\|$)

Numerical Illustration

Ideal low-pass filter: $\varphi\left(x, x^{\prime}\right)=\frac{\sin \left(\left(2 f_{c}+1\right) \pi\left(x-x^{\prime}\right)\right)}{\sin \left(\pi\left(x-x^{\prime}\right)\right)}, f_{c}=6$.

Numerical Illustration

Ideal low-pass filter: $\varphi\left(x, x^{\prime}\right)=\frac{\sin \left(\left(2 f_{c}+1\right) \pi\left(x-x^{\prime}\right)\right)}{\sin \left(\pi\left(x-x^{\prime}\right)\right)}, f_{c}=6$.

Solution path $\lambda \mapsto a_{\lambda}$

Numerical Illustration

Ideal low-pass filter: $\varphi\left(x, x^{\prime}\right)=\frac{\sin \left(\left(2 f_{c}+1\right) \pi\left(x-x^{\prime}\right)\right)}{\sin \left(\pi\left(x-x^{\prime}\right)\right)}, f_{c}=6$.

Solution path $\lambda \mapsto a_{\lambda}$

Discrete \rightarrow continuous:
Theorem: [Duval-Peyré 2013]
If η_{V} is valid, then a_{λ} is supported on pairs of neighbors around $\operatorname{supp}\left(m_{0}\right)$.
(holds for $\lambda \sim\|w\|$ small enough.

Conclusion

Gauges: encode linear models as singular points.

Conclusion

Gauges: encode linear models as singular points.

Performance measures $<L_{\text {model }}^{L^{2} \text { error }}>$ different CS guarantees

Conclusion

Gauges: encode linear models as singular points.

Performance measures $<$ Sifferent CS guarantees

Conclusion

Gauges: encode linear models as singular points.

Performance measures $<$ inferent CS guarantees
Open problems:

- CS performance with arbitrary gauges.
- Approximate model recovery $T_{x^{\star}} \approx T_{x_{0}}$.
(e.g. grid-free recovery)

