Low Complexity **Regularization of Inverse Problems** *Cours* #2 **Recovery Guarantees**

Gabriel Peyré

DE UNIVERSITÉ PARIS

<u>www.numerical-tours.com</u>

• Course #1: Inverse Problems

• Course #2: Recovery Guarantees

• Course #3: Proximal Splitting Methods

Low-complexity Regularization with Gauges

• Performance Guarantees

• Grid-free Regularization

Observations: $y = \Phi x_0 + w \in \mathbb{R}^P$.

Estimator: x(y) depends only on

Union of models: $T \in \mathcal{T}$ linear spaces.

Synthesis sparsity:

Coefficients x

Image Ψx

Union of models: $T \in \mathcal{T}$ linear spaces.

Coefficients x

Image Ψx

Union of models: $T \in \mathcal{T}$ linear spaces.

Union of models: $T \in \mathcal{T}$ linear spaces.

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+$ Convex $\forall \alpha \in \mathbb{R}^+, J(\alpha x) = \alpha J(x)$

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+$ Convex $\forall \alpha \in \mathbb{R}^+, J(\alpha x) = \alpha J(x)$

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+ \quad | \begin{array}{c} \text{Convex} \\ \forall \alpha \in \mathbb{R}^+, \ J(\alpha x) = \alpha J(x) \end{array}$

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+ \quad | \begin{array}{c} \text{Convex} \\ \forall \alpha \in \mathbb{R}^+, \ J(\alpha x) = \alpha J(x) \end{array}$

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+ \quad | \begin{array}{c} \text{Convex} \\ \forall \alpha \in \mathbb{R}^+, \ J(\alpha x) = \alpha J(x) \end{array}$

Gauge: $J: \mathbb{R}^N \to \mathbb{R}^+$ Convex $\forall \alpha \in \mathbb{R}^+, J(\alpha x) = \alpha J(x)$

Subdifferentials and Models

 $\partial J(x) = \{\eta \setminus \forall y, J(y) \ge J(x) + \langle \eta, y - x \rangle \}$

Definition: $T_x = \text{VectHull}(\partial J(x))^{\perp}$

Definition: $T_x = \text{VectHull}(\partial J(x))^{\perp}$ $\eta \in \partial J(x) \implies \text{Proj}_{T_x}(\eta) = e_x$

$$T_x = \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\}$$

 $e_x = \operatorname{sign}(x)$

 $\begin{aligned} \ell^1 \text{ sparsity: } J(x) &= \|x\|_1 \\ e_x &= \operatorname{sign}(x) \\ \end{aligned} \qquad \begin{array}{l} T_x &= \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\} \\ \hline Structured \text{ sparsity: } J(x) &= \sum_b \|x_b\| \\ e_x &= (\mathcal{N}(x_b))_{b \in \mathcal{B}} \\ \end{array} \qquad \begin{array}{l} \mathcal{N}(a) &= a/\|a\| \\ T_x &= \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\} \end{aligned}$

Examples

$$\begin{split} \ell^1 \ sparsity: \ J(x) &= \|x\|_1 \\ e_x &= \operatorname{sign}(x) \qquad T_x = \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\} \\ \hline Structured \ sparsity: \ J(x) &= \sum_b \|x_b\| \qquad \mathcal{N}(a) = a/\|a\| \\ e_x &= (\mathcal{N}(x_b))_{b \in \mathcal{B}} \qquad T_x = \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\} \\ \hline Nuclear \ norm: \ J(x) &= \|x\|_* \qquad SVD: \ x = U\Lambda V^* \\ e_x &= UV^* \qquad T_x = \{UA + BV^* \setminus (A, B) \in (\mathbb{R}^{n \times n})^2\} \end{split}$$

Examples

$$\ell^{1} \text{ sparsity: } J(x) = \|x\|_{1}$$

$$e_{x} = \operatorname{sign}(x) \qquad T_{x} = \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\}$$

$$Structured \text{ sparsity: } J(x) = \sum_{b} \|x_{b}\| \qquad \mathcal{N}(a) = a/\|a\|$$

$$e_{x} = (\mathcal{N}(x_{b}))_{b \in \mathcal{B}} \qquad T_{x} = \{z \setminus \operatorname{supp}(z) \subset \operatorname{supp}(x)\}$$

$$Nuclear norm: J(x) = \|x\|_{*} \qquad SVD: \ x = U\Lambda V^{*}$$

$$e_{x} = UV^{*} \qquad T_{x} = \{UA + BV^{*} \setminus (A, B) \in (\mathbb{R}^{n \times n})^{2}\}$$

$$Anti-sparsity: J(x) = \|x\|_{\infty} \qquad I = \{i \setminus |x_{i}| = \|x\|_{\infty}\}$$

$$e_{x} = |I|^{-1}\operatorname{sign}(x) \qquad T_{x} = \{y \setminus y_{I} \propto \operatorname{sign}(x_{I})\}$$

$$\int \mathcal{P}^{\mathcal{J}(x)}_{\mathcal{J}(x)} \qquad \int \mathcal{P}^{\mathcal{J}$$

Low-complexity Regularization with Gauges

Performance Guarantees

• Grid-free Regularization

Tight dual certificates:

 $\bar{\mathcal{D}}(x_0) = \operatorname{Im}(\Phi^*) \cap \operatorname{ri}(\partial J(x_0))$

ri(E) = relative interior of E

= interior for the topology of $\operatorname{aff}(E)$

 $\partial J(x_0)$

 $\Phi_{\mathcal{X}} = \Phi_{\mathcal{X}_{\ell}}$

X

Tight dual certificates:

 $\bar{\mathcal{D}}(x_0) = \operatorname{Im}(\Phi^*) \cap \operatorname{ri}(\partial J(x_0))$

ri(E) = relative interior of E

= interior for the topology of $\operatorname{aff}(E)$

Theorem: If $\exists \eta \in \overline{\mathcal{D}}(x_0)$, for $\lambda \sim ||w||$ one has $||x^* - x_0|| = O(||w||)$

 $\partial J(x_0)$

 $\Phi x = \Phi x_0$

X

Tight dual certificates:

 $\bar{\mathcal{D}}(x_0) = \operatorname{Im}(\Phi^*) \cap \operatorname{ri}(\partial J(x_0))$

ri(E) = relative interior of E

= interior for the topology of $\operatorname{aff}(E)$

Theorem: If $\exists \eta \in \overline{\mathcal{D}}(x_0)$, for $\lambda \sim ||w||$ one has $||x^* - x_0|| = O(||w||)$

[Grassmair, Haltmeier, Scherzer 2010]: $J = \|\cdot\|_1$. [Grassmair 2012]: $J(x^* - x_0) = O(\|w\|)$.

 $\partial J(x_0)$

 $\Phi x = \Phi x_0$

X

Tight dual certificates:

 $\bar{\mathcal{D}}(x_0) = \operatorname{Im}(\Phi^*) \cap \operatorname{ri}(\partial J(x_0))$

ri(E) = relative interior of E

= interior for the topology of $\operatorname{aff}(E)$

Theorem: If $\exists \eta \in \overline{\mathcal{D}}(x_0)$, for $\lambda \sim ||w||$ one has $||x^* - x_0|| = O(||w||)$

[Grassmair, Haltmeier, Scherzer 2010]: $J = \|\cdot\|_1$. [Grassmair 2012]: $J(x^* - x_0) = O(\|w\|)$.

 \longrightarrow The constants depend on N ...

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d.

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d.Sparse vectors: $J = \| \cdot \|_1$.Theorem:Let $s = \|x_0\|_0$. If[Rudelson, Vershynin 2006]
[Chandrasekaran et al. 2011] $P \ge 2s \log (N/s)$ Then $\exists \eta \in \bar{\mathcal{D}}(x_0)$ with high probability on Φ .

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J = \|\cdot\|_1$. Theorem: Let $s = \|x_0\|_0$. If [Rudelson, Vershynin 2006] $P \ge 2s \log (N/s)$ Then $\exists \eta \in \bar{\mathcal{D}}(x_0)$ with high probability on Φ .

Low-rank matrices:
$$J = \|\cdot\|_*$$
.

Theorem: Let $r = \operatorname{rank}(x_0)$. If [Chandrasekaran et al. 2011] $P \ge 3r(N_1 + N_2 - r)$ $x_0 \in \mathbb{R}^{N_1 \times N_2}$ Then $\exists \eta \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J = \|\cdot\|_1$. Theorem: Let $s = \|x_0\|_0$. If [Rudelson, Vershynin 2006] $P \ge 2s \log (N/s)$ Then $\exists \eta \in \bar{\mathcal{D}}(x_0)$ with high probability on Φ .

Low-rank matrices:
$$J = \|\cdot\|_*$$
.

Theorem: Let $r = \operatorname{rank}(x_0)$. If [Chandrasekaran et al. 2011] $P \ge 3r(N_1 + N_2 - r)$ $x_0 \in \mathbb{R}^{N_1 \times N_2}$ Then $\exists \eta \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

 \rightarrow Similar results for $\|\cdot\|_{1,2}, \|\cdot\|_{\infty}$.

Phase Transitions

From [Amelunxen et al. 20013]

$$\eta \in \mathcal{D}(x_0) \implies \begin{cases} \eta = \Phi^* q & T = T_{x_0} \\ \operatorname{Proj}_T(\eta) = e & e = e_{x_0} \end{cases}$$

$$\eta \in \mathcal{D}(x_0) \implies \begin{cases} \eta = \Phi^* q & T = T_{x_0} \\ \operatorname{Proj}_{T}(\eta) = e & e = e_{x_0} \end{cases}$$

Minimal-norm pre-certificate: $\eta_0 = \underset{\eta = \Phi^* q, \eta_T = e}{\operatorname{argmin}} \|q\|$

$$\eta \in \mathcal{D}(x_0) \implies \begin{cases} \eta = \Phi^* q & T = T_{x_0} \\ \operatorname{Proj}_{\mathbf{T}}(\eta) = e & e = e_{x_0} \end{cases}$$

Minimal-norm pre-certificate: $\eta_0 = \underset{\eta = \Phi^* q, \eta_T = e}{\operatorname{argmin}} \|q\|$

Proposition: One has
$$\eta_0 = (\Phi_T^+ \Phi)^* e$$
 $\Phi_T = \Phi \circ \operatorname{Proj}_T$

$$\eta \in \mathcal{D}(x_0) \implies \begin{cases} \eta = \Phi^* q & T = T_{x_0} \\ \operatorname{Proj}_{\mathbf{T}}(\eta) = e & e = e_{x_0} \end{cases}$$

Minimal-norm pre-certificate: $\eta_0 = \underset{\eta = \Phi^* q, \eta_T = e}{\operatorname{argmin}} \|q\|$

Proposition: One has
$$\eta_0 = (\Phi_T^+ \Phi)^* e$$
 $\Phi_T = \Phi \circ \operatorname{Proj}_T$

Theorem: If $\eta_0 \in \overline{\mathcal{D}}(x_0)$ and $\lambda \sim ||w||$, the unique solution x^* of $\mathcal{P}_{\lambda}(y)$ for $y = \Phi x_0 + w$ satisfies $T_{x^*} = T_{x_0}$ and $||x^* - x_0|| = O(||w||)$ [Vaiter et al. 2013]

$$\eta \in \mathcal{D}(x_0) \implies \begin{cases} \eta = \Phi^* q & T = T_{x_0} \\ \operatorname{Proj}_{\mathbf{T}}(\eta) = e & e = e_{x_0} \end{cases}$$

Minimal-norm pre-certificate: $\eta_0 = \underset{\eta = \Phi^* q, \eta_T = e}{\operatorname{argmin}} \|q\|$

Proposition: One has
$$\eta_0 = (\Phi_T^+ \Phi)^* e$$
 $\Phi_T = \Phi \circ \operatorname{Proj}_T$

Theorem: If $\eta_0 \in \overline{\mathcal{D}}(x_0)$ and $\lambda \sim \|w\|$, the unique solution x^* of $\mathcal{P}_{\lambda}(y)$ for $y = \Phi x_0 + w$ satisfies $T_{x^*} = T_{x_0}$ and $\|x^* - x_0\| = O(\|w\|)$ [Vaiter et al. 2013] [Fuchs 2004]: $J = \|\cdot\|_1$. [Vaiter et al. 2011]: $J = \|D^* \cdot\|_1$. [Bach 2008]: $J = \|\cdot\|_{1,2}$ and $J = \|\cdot\|_*$.

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d.Sparse vectors: $J = \| \cdot \|_1$.Theorem:Let $s = \|x_0\|_0$. If[Wainwright 2009]
[Dossal et al. 2011] $P > 2s \log(N)$ Then $\eta_0 \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J = \|\cdot\|_1$. Theorem: Let $s = \|x_0\|_0$. If [Wainwright 2009] Dossal et al. 2011] $P > 2s \log(N)$ Then $\eta_0 \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

Phase transitions:

 L^2 stability $P \sim 2s \log(N/s)$

vs.

Model stability $P \sim 2s \log(N)$

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J = \|\cdot\|_1$. Theorem: Let $s = \|x_0\|_0$. If [Wainwright 2009] Dossal et al. 2011] $P > 2s \log(N)$ Then $\eta_0 \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

Phase
transitions: L^2 stability
 $P \sim 2s \log(N/s)$ Model stability
 $P \sim 2s \log(N)$

 \longrightarrow Similar results for $\|\cdot\|_{1,2}, \|\cdot\|_*, \|\cdot\|_{\infty}$.

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0,1)$, i.i.d. Sparse vectors: $J = \|\cdot\|_1$. Theorem: Let $s = \|x_0\|_0$. If [Wainwright 2009] Dossal et al. 2011] $P > 2s \log(N)$ Then $\eta_0 \in \overline{\mathcal{D}}(x_0)$ with high probability on Φ .

VS.

Phase L^2 transitions: $P \sim 2$

$$L^2$$
 stability
 $P \sim 2s \log(N/s)$

Model stability
$$P \sim 2s \log(N)$$

 \longrightarrow Similar results for $\|\cdot\|_{1,2}, \|\cdot\|_*, \|\cdot\|_{\infty}$.

 \longrightarrow Not using RIP technics (non-uniform result on x_0).

1-D Sparse Spikes Deconvolution

$$\Phi x = \sum_{i} x_i \varphi(\cdot - \Delta i)$$
$$J(x) = \|x\|_1$$

Increasing Δ :

- \rightarrow reduces correlation.
- \rightarrow reduces resolution.

1-D Sparse Spikes Deconvolution

$$I = \{j \setminus x_0(j) \neq 0\}$$
$$\|\eta_{0,I^c}\|_{\infty} < 1$$
$$\{\eta_0 \in \overline{\mathcal{D}}(x_0)\}$$
$$\{\eta_0 \in \overline{\mathcal{D}}(x_0)\}$$
$$\{\eta_0 \in \overline{\mathcal{D}}(x_0)\}$$
$$\{\eta_0 \in \overline{\mathcal{D}}(x_0)\}$$

 x_0

Low-complexity Regularization with Gauges

• Performance Guarantees

Grid-free Regularization

Support Instability and Measures

When $N \to +\infty$, support is not stable:

$$\|\eta_{0,I^c}\|_{\infty} \xrightarrow[N \to +\infty]{} c > 1.$$

Measurements: $y = \Phi(m_0) + w$ where $\begin{cases} m_0 \in \mathcal{M}(\mathbb{T}), \\ \Phi : \mathcal{M}(\mathbb{T}) \to \mathrm{L}^2(\mathbb{T}), \\ w \in \mathrm{L}^2(\mathbb{T}). \end{cases}$

Measurements:
$$y = \Phi(m_0) + w$$
 where
$$\begin{cases} m_0 \in \mathcal{M}(\mathbb{T}), \\ \Phi : \mathcal{M}(\mathbb{T}) \to \mathrm{L}^2(\mathbb{T}), \\ w \in \mathrm{L}^2(\mathbb{T}). \end{cases}$$

Acquisition operator:

$$\Phi(m)(x) = \int_{\mathbb{T}} \varphi(x, x') dm(x') \quad \text{where} \quad \varphi \in C^{2}(\mathbb{T} \times \mathbb{T})$$

Measurements:
$$y = \Phi(m_0) + w$$
 where
$$\begin{cases} m_0 \in \mathcal{M}(\mathbb{T}), \\ \Phi : \mathcal{M}(\mathbb{T}) \to \mathrm{L}^2(\mathbb{T}), \\ w \in \mathrm{L}^2(\mathbb{T}). \end{cases}$$

Acquisition operator:

$$\Phi(m)(x) = \int_{\mathbb{T}} \varphi(x, x') dm(x') \quad \text{where} \quad \varphi \in C^2(\mathbb{T} \times \mathbb{T})$$

Total-variation over measures regularization:

$$\min_{m \in \mathcal{M}(\mathbb{T})} \frac{1}{2} \|\Phi(m) - y\|^2 + \lambda \|m\|_{\mathrm{TV}}$$

Measurements:
$$y = \Phi(m_0) + w$$
 where
$$\begin{cases} m_0 \in \mathcal{M}(\mathbb{T}), \\ \Phi : \mathcal{M}(\mathbb{T}) \to \mathrm{L}^2(\mathbb{T}), \\ w \in \mathrm{L}^2(\mathbb{T}). \end{cases}$$

Acquisition operator:

$$\Phi(m)(x) = \int_{\mathbb{T}} \varphi(x, x') dm(x') \quad \text{where} \quad \varphi \in C^2(\mathbb{T} \times \mathbb{T})$$

Total-variation over measures regularization:

$$\min_{m \in \mathcal{M}(\mathbb{T})} \frac{1}{2} \|\Phi(m) - y\|^2 + \lambda \|m\|_{\mathrm{TV}}$$

- \longrightarrow Infinite dimensional convex program.
- \longrightarrow If dim(Im(Φ)) < + ∞ , dual is finite dimensional.
- \longrightarrow If Φ is a filtering, re-cast dual as SDP program.

Measures:

Measures:

On a grid z:

$$\min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi m - y\|^2 + \lambda \|m\|_{\mathrm{TV}} + 1 - \frac{z_i}{z_i}$$

$$\min_{a \in \mathbb{R}^N} \frac{1}{2} \|\Phi_z a - y\|^2 + \lambda \|a\|_1$$

Measures:

On a grid *z*:

Measures:

$$\begin{array}{c} \min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi m - y\|^2 + \lambda \|m\|_{\mathrm{TV}} \\ \min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi_z a - y\|^2 + \lambda \|a\|_1 \\ \text{For } m_0 = m_{z,a_0}, \ \operatorname{supp}(m_0) = x_0, \ \operatorname{supp}(a_0) = I: \end{array}$$

 $\eta_F = \Phi^* \Phi_I^{*,+} \operatorname{sign}(a_{0,I})$

 η_F

 $\min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi m - y\|^2 + \lambda \|m\|_{\mathrm{TV}}$ +1-----Measures: z_i On a grid z: $\min_{a \in \mathbb{R}^N} \frac{1}{2} \| \Phi_z a - y \|^2 + \lambda \| a \|_1$ η_V For $m_0 = m_{z,a_0}$, $supp(m_0) = x_0$, $supp(a_0) = I$: $\eta_V = \Phi^* \Gamma_{x_0}^{+,*} (\text{sign}(a_0), 0)^*$ $\eta_F = \Phi^* \Phi_I^{*,+} \operatorname{sign}(a_{0,I})$ where $\Gamma_x(a,b) = \sum_i a_i \varphi(\cdot, x_i) + b_i \varphi'(\cdot, x_i)$

Measures:

On a grid *z*:

Measures:

$$\begin{array}{c} \min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi m - y\|^2 + \lambda \|m\|_{\mathrm{TV}} \\ \min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi_z a - y\|^2 + \lambda \|a\|_1 \\ \text{Tor } m_0 = m_{z,a_0}, \operatorname{supp}(m_0) = x_0, \operatorname{supp}(a_0) = I: \end{array} \right.^{+1} + \frac{\eta_F}{z_i} \\$$

$$\eta_V = \Phi^* \Gamma_{x_0}^{+,*} \left(\operatorname{sign}(a_0), 0 \right)^*$$

where
$$\Gamma_x(a,b) = \sum_i a_i \varphi(\cdot, x_i) + b_i \varphi'(\cdot, x_i)$$

Theorem: [Fuchs 2004] If $\forall j \notin I, |\eta_F(x_j)| < 1$, then $\operatorname{supp}(a_{\lambda}) = \operatorname{supp}(a_0)$

 $\eta_F = \Phi^* \Phi_I^{*,+} \operatorname{sign}(a_{0,I})$

(holds for ||w|| small enough and $\lambda \sim ||w||$)

Measures:

On a grid *z*:

Measures:

$$\begin{array}{ccc}
\min_{m \in \mathcal{M}} \frac{1}{2} \|\Phi m - y\|^2 + \lambda \|m\|_{\mathrm{TV}} \\
\max_{m \in \mathcal{M}} \frac{1}{2} \|\Phi_z a - y\|^2 + \lambda \|a\|_1 \\
\text{For } m_0 = m_{z,a_0}, \, \operatorname{supp}(m_0) = x_0, \, \operatorname{supp}(a_0) = I:
\end{array}$$

$$\eta_V = \Phi^* \Gamma_{x_0}^{+,*} \left(\text{sign}(a_0), 0 \right)^*$$

where
$$\Gamma_x(a,b) = \sum_i a_i \varphi(\cdot, x_i) + b_i \varphi'(\cdot, x_i)$$

Theorem: [Fuchs 2004] If $\forall j \notin I, |\eta_F(x_j)| < 1$, then $\operatorname{supp}(a_{\lambda}) = \operatorname{supp}(a_0)$

 $\eta_F = \Phi^* \Phi_I^{*,+} \operatorname{sign}(a_{0,I})$

Theorem: [Duval-Peyré 2013] If $\forall t \notin x_0, |\eta_V(t)| < 1$, then $m_{\lambda} = m_{x_{\lambda}, a_{\lambda}}$ with $||x_{\lambda} - x_0||_{\infty} = O(||w||)$

(holds for ||w|| small enough and $\lambda \sim ||w||$)

Numerical Illustration

Ideal low-pass filter: $\varphi(x, x') = \frac{\sin((2f_c+1)\pi(x-x'))}{\sin(\pi(x-x'))}, f_c = 6.$

Numerical Illustration

Ideal low-pass filter: $\varphi(x, x') = \frac{\sin((2f_c+1)\pi(x-x'))}{\sin(\pi(x-x'))}, f_c = 6.$

Numerical Illustration

Ideal low-pass filter: $\varphi(x, x') =$

$$\frac{\sin((2f_c+1)\pi(x-x'))}{\sin(\pi(x-x'))}, \ f_c = 6.$$

Discrete \rightarrow continuous:

Theorem: [Duval-Peyré 2013] If η_V is valid, then a_λ is supported on pairs of neighbors around $\operatorname{supp}(m_0)$.

(holds for $\lambda \sim \|w\|$ small enough.

Conclusion

Gauges: encode linear models as singular points.

Open problems:

- CS performance with arbitrary gauges.
- Approximate model recovery $T_{x^*} \approx T_{x_0}$. (e.g. grid-free recovery)