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Introduction Symmetry in images Symmetry in 3D shapes Conclusion

Symmetry is all around...

In nature: mirror, rotational, helical, scale (fractal)

Man-made objects: mirror, rotational, quadrilateral

Music: translation, glide reflection

Beethoven’s Moonlight Sonata Chopin’s Waltz
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Symmetry in Image and 3D Shape Analysis

Object recognition in human perception is greatly enhanced by the
presence of symmetries [BR79]

Automatic object recognition in images and 3D shape matching work
better in the presence of symmetries?
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PART II: Symmetry in images

Object recognition in images

Recognition rate improves when symmetry information is available
[PLC+12]

Popular state-of-the-art methods use bag-of-words approaches based
on SIFT-like descriptors

Only few recent works try to include symmetry descriptors [HS12]
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PART II: Symmetry in images

Object recognition in images

Recognition rate improves when symmetry information is available
[PLC+12]

Popular state-of-the-art methods use bag-of-words approaches based
on SIFT-like descriptors

Only few recent works try to include symmetry descriptors [HS12]

Reliable symmetry detection in images is difficult

– Background clutter

– Partial (not perfect) symmetries

– Perspective effect, occlusions

Contribution: Symmetry detection in images with controlled number of false
positives
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Symmetry detection in images with controlled number of false positives

Joint work with R. Grompone von Gioi (ENS Cachan) and M. Ovsjanikov
(École Polytechnique) – Symmetry Competition Workshop CVPR2013

Proposed method
Mirror symmetry detection

Orthogonal view of objects, no perspective skew

Detection = two-stage process: candidate selection + validation
Main concern: diminish false detections→ a contrario approach
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Candidate selection

Goal: No false negatives!

Candidate: image patch (x1, y1, x2, y2,width) ∼ (ρ, θ,width, height, offset)

5 degrees of freedom→ exhaustive search not feasible
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Introduction Symmetry in images Symmetry in 3D shapes Conclusion

Candidate selection

Goal: No false negatives!

Candidate: image patch (x1, y1, x2, y2,width) ∼ (ρ, θ,width, height, offset)

A. Reisfeld voting using SIFT features→ (ρ, θ) [LE06]

B. Exhaustive search along (ρ, θ) axis using integral images→ (width, height, offset)
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Validation

Goal: No false positives!

Candidate: image patch s(x1, y1, x2, y2,width) ∼ s(ρ, θ,width, height, offset)

Is the given patch a meaningful symmetry?
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Validation

Goal: No false positives!

Candidate: image patch s(x1, y1, x2, y2,width) ∼ s(ρ, θ,width, height, offset)

Measure for the degree of symmetry: gradient orientation error

for all the η pairs of pixels in patch
accumulate normalised angular error

k(s) =
η∑
i

|δi|
π

k(s) ∈ [0, η]

{
0, perfect symmetry
η, worst symmetry

Need a detection threshold on k(s)
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Validation

Goal: No false positives!

A contrario theory: formalises the non-accidentalness principle (“no
perception in noise”) using a multiple hypothesis testing approach

Random model: null hypothesis H0

Candidate s: outlier w.r.t. H0?
yes−→ s – meaningful detection
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Validation

Goal: No false positives!

A contrario theory: formalises the non-accidentalness principle (“no
perception in noise”) using a multiple hypothesis testing approach

Random model: null hypothesis H0

Candidate s: outlier w.r.t. H0?
yes−→ s – meaningful detection

Random model H0: Gaussian white noise

p-value: PH0 [kX(s) ≤ k(s)]

Number of candidates: NI = (mn)
5
2

ε = 1→ one false positive per image

Meaningfulness test: NI · p-value(s) ≤ ε
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Results

- No detection in noise images

- Satisfactory results in general

Human labels State-of-the-art Proposed
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Summary

Is symmetry information useful and used in object recognition in images?

Conclusion: Using symmetry information improves object recognition in
images

Contribution: Parameterless mirror-symmetry detection with controlled
number of false positives

Limitations: No perspective skew

Future work: Design symmetry descriptors for object recognition tasks
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PART III: Symmetry in 3D shapes

3D shape matching: Find isometric correspondences between shapes with
intrinsic symmetries

Isometries approximate well articulated motion of humans and animals

Approximately preserve geodesic distances between pairs of points
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PART III: Symmetry in 3D shapes

3D shape matching: Find isometric correspondences between shapes with
intrinsic symmetries

Most approximately isometric shapes contain intrinsic symmetries

Approximately preserve geodesic distances between pairs of points
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

Approximately preserve geodesic distances between pairs of points
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

T̂ = arg min
T

∑
x,y |d

M(x, y)− dN(T(x), T(y))| difficult
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

At least two equally-good solutions; non-convex problem← symmetry
ambiguity
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

Symmetry flipping→ continuity issue; symmetry makes the problem
harder
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

Existing work: coarse-to-fine approaches, based on some initial point
correspondences
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

Existing work: coarse-to-fine approaches, based on some initial point
correspondences→ complex and error-prone [GYF11]
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PART III: Symmetry in 3D shapes

Given a pair of shapes with intrinsic symmetries, find isometric
correspondences

Contribution: Matching of 3D shapes with intrinsic symmetries without point
correspondences
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Matching of 3D shapes with intrinsic symmetries

Joint work with M. Ovsjanikov (École Polytechnique), Q. Mérigot (CNRS), L.
Guibas (Stanford University) – SGP2013

Proposed method
Uses functional map framework [OBCS+12] for shape matching
Matching is done between halves of the shapes
Two equally good solutions are returned
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Functional map representation

New concept of matching between shapes

T : N → M, pointwise map T(y) = x

TF : L2(M)→ L2(N), function-wise map TF(f ) = g, where g = f ◦ T

T ⇒ TF and TF ⇒ T
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Functional map representation

How to compute TF?
TF – linear map between vector spaces

Choose convenient bases (LB eigenfunctions) for the two vector spaces:
f =

∑
i aiΦ

M
i and g =

∑
i biΦ

N
i

TF – matrix representation Ca = b

Given enough pairs of functions defined on the two shapes, C can be
recovered through a least squares system

Function constraints: descriptor preservation (HKS, WKS), landmark
correspondences

Functional map: state-of-the-art results in isometric shape matching

Drawback: symmetry flipping – needs some point correspondences
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Quotient space matching

Given a pair of shapes with known intrinsic symmetries, solve the symmetry
ambiguity by matching between halves of the shapes

Quotienting the shape corresponds to splitting the function space
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Quotient space matching

Given a pair of shapes with known symmetries:

Split the space of functions into symmetric and antisymmetric subspaces

L2
+(M) = {f ∈ L2(M) | f ◦ SM = f}; L2(M) = L2

+(M)⊕ L2
−(M)

There exists an orthogonal basis of L2
+(M) formed by LB eigenfunctions

Functional map decomposed into parts C = C+ ⊕ C−, estimated
independently
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Quotient space matching

Given a pair of shapes with known symmetries:

Solve for C+ as before
C+ is easier to compute than C

– C+ is unique
– The descriptors (HKS, WKS) are usually symmetric functions

Use C+ to recover a point-to-orbit map

Use the known symmetries to compute two equally-good point-to-point
maps
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Semi-quotient space matching

More practical scenario: the symmetry is known on only one shape

For the map C : L2(N)→ L2(M), compute its symmetric part R

Transfer the symmetry, and proceed as before
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Results

Symmetry transfer accuracy
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Results

Quotient space matching
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Summary

Is symmetry information useful and used in 3D shape matching?

Conclusion: Shape matching apparently more difficult for shapes with
symmetries

Contribution: Matching of shapes with intrinsic symmetry without point
correspondences

Bonus: Accurate symmetry estimation on an unknown shape through
symmetry transfer
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PART IV: Putting all together

Large public repositories of images (flickr) and 3D shapes (Google
Warehouse)
Increasing interest for joint image and 3D shape analysis
Possible application: automatic texture mapping from natural images
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PART IV: Putting all together

Large public repositories of images (flickr) and 3D shapes (Google
Warehouse)
Increasing interest for joint image and 3D shape analysis
Possible application: automatic texture mapping from natural images

- Shape matching
- Texture transfer

- Symmetry detection
- Object localization
- Object deformation
- Texture mapping
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