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A primer on surfaces

We deal with connected , compact and orientable surfaces of
genus g without boundary.

Discrete metric
Triangulation G .
Length of a curve |γ|G :
Number of edges.

Riemannian metric
Scalar product m on the
tangent space.
Riemannian length |γ|m.
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Systoles and surface decompositions

We study the length of topologically interesting curves and graphs,
for discrete and continuous metrics.

Non-contractible curves Pants decompositions

Cut-graphs

Fundamental objects in algorithm design for surface embedded
graphs, texture mapping, and many other applications. 3 / 26



Discrete Setting: Topological graph theory

The edgewidth of a triangulated surface is the length of the
shortest noncontractible cycle.

Theorem (Hutchinson ’88)

The edgewidth of a triangulated surface with n triangles of genus g
is O(

√
n/g log g).

Hutchinson conjectured that the right bound is Θ(
√

n/g).
Disproved by Przytycka and Przytycki ’90-97 who achieved
Ω(

√
n/g

√
log g), and conjectured Θ(

√
n/g log g).

How about non-separating cycles ?
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Continuous Setting: Systolic Geometry

The systole of a Riemannian surface is the length of the shortest
noncontractible cycle.

Theorem (Gromov ’83, Katz and Sabourau ’04)

The systole of a Riemannian surface of genus g and area A is
O(

√
A/g log g).

Known variants for non-separating cycles.
Buser and Sarnak ’94 introduced arithmetic surfaces
achieving the lower bound Ω(

√
A/g log g).

Larry Guth: “Arithmetic hyperbolic surfaces are remarkably
hard to picture.”
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A two way street: From discrete to continuous.

Theorem (Colin de Verdière, Hubard, de Mesmay ’13)

Let (S ,G ) be a triangulated surface of genus g, with n triangles.
There exists a Riemannian metric m on S with area n such that for
every closed curve γ in (S ,m) there exists a homotopic closed
curve γ′ on (S ,G ) with

|γ′|G ≤ (1 + δ)
4
√
3 |γ|m for some arbitrarily small δ.

Proof.

Glue Euclidean triangles of area 1 (and thus side length 2/ 4
√
3)

on the triangles.
Smooth the metric.
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Corollaries

Corollary

Let (S ,G ) be a triangulated surface with genus g and n triangles.
1 Some non contractible cycle has length O(

√
n/g log g).

2 Some non separating cycle has length O(
√

n/g log g).

(1) shows that Gromov ⇒ Hutchinson and improves the best
known constant.
(2) is new.
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A two way street: From continuous to discrete

Theorem (Colin de Verdière, Hubard, de Mesmay ’13)

Let (S ,m) be a Riemannian surface of genus g and area A. There
exists a triangulated surface (S ,G ) embedded on S with
n triangles, such that every closed curve γ in (S ,G ) satisfies

|γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G for some arbitrarily small δ.

Proof.

Take a maximal set of balls of radius δ.

By Dyer, Zhang and Möller ’08, the Delaunay graph of the centers
is a triangulation for δ small enough.
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Corollaries

This shows that Hutchinson ⇒ Gromov.
Proof of the conjecture of Przytycka and Przytycki:

Corollary

There exist arbitrarily large g and n such that the following holds:
There exists a triangulated combinatorial surface of genus g, with
n triangles, of edgewidth at least 1−δ

6

√
n/g log g for arbitrarily small δ.
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Pants decompositions

A pants decomposition of a triangulated or Riemannian
surface S is a family of cycles Γ such that cutting S along Γ
gives pairs of pants, e.g., spheres with three holes.

A pants decomposition has 3g − 3 curves.
Complexity of computing a shortest pants decomposition on a
triangulated surface: in NP, not known to be NP-hard.

16 / 26



Pathologies

Several curves may run along the same edge:

→ Colin de Verdière and Lazarus ’07 proved an O(gn) bound
on the length of the shortest pants decomposition.
We have an O(gn) algorithm to compute pants decomposition
of length O(g3/2√n), taking inspiration from Riemann(ian)
surfaces. (skipped)

Random surfaces: Sample uniformly at random among the
triangulated surfaces with n triangles.

These run-alongs happen a lot for random triangulated surfaces:

Theorem (Guth, Parlier and Young ’11)

If (S ,G ) is a random triangulated surface with n triangles, and thus
O(n) edges, the length of the shortest pants decomposition of
(S ,G ) is Ω(n7/6−δ) w.h.p. for arbitrarily small δ
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Cut-graphs with fixed combinatorial map

What is the length of the shortest cut-graph with a fixed shape
(combinatorial map) ?
Useful to compute a homeomorphism between two surfaces.

Example: Canonical systems of loops (Lazarus et al ’01) have
Θ(gn) length.

Can one find a better map ?

Theorem (Colin de Verdière, Hubard, de Mesmay ’13)

If (S ,G ) is a random triangulated surface with n triangles and
genus g, for any combinatorial map M, the length of the shortest
cut-graph with combinatorial map M is Ω(n7/6−δ) w.h.p. for arbitrarily
small δ.
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Crossing numbers of graphs

Restated in a dual setting: What is the minimal number of
crossings between two cellularly embedded graphs G1 and G2 with
specified combinatorial maps ?

Corollary
For a fixed G1, for most choices of trivalent G2 with n vertices,
there are Ω(n7/6−δ) crossings in any embedding of G1 and G2 for
arbitrarily small δ.

Thank you ! Questions ?
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