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» CEA-Leti has designed small sensors that can measure their orientation

YJAQ accelerometer + magnetometer =—> oriented normal

» Applications in monitoring the deformations of a known surface S

already a non-convex inverse problem

Biard, Lacolle, Szafran (LJK) Huard, Sprynski (CEA)

» What happens if we throw sensors on S and measure normals only 7

input data = unorganized normals without positional information.

» Our goal: S = boundary of a convex body, random sampling.
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is a measure on S%~! defined by:

X ng () ui(B) =area({x € OK;ng(x) € B})
( K = area(ny (B))

In particular, px(S1) = area(0K).
ng : 0K — Sd—1

Example: P C R? is a polyhedron

pp = Zfil area(F;)d, | 11 = ith face
n; = unit normal
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Minkowski-Alexandrov theorem

Minkowski problem: Given a measure 1 on S9!, find K with px = p.

Properties of 11x: K = bounded convex body with non-empty interior

(non-degeneracy) for all hyperplane H, (S 1\ H) # 0

(zero-mean) mean(urx) := [eu s vdur(v) =0

Theorem (Minkowski-Alexandrov): Given any measure y on S41,
which satisfies (non-degeneracy) and (zero-mean), there exists

a convex body K with = pug. This body is unique up to translation.
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Definition: dpy, (¢, V) = maxsepr, \fsd_l Jdp— fsd_l fdwv|, where
BL; = 1-Lipschitz functions bounded by 1 on S9!

Theorem (Diskant; Hug-Schneider): Given convex bodies K and L with
r < min(inrad(K ), inrad(L))
R > max(circumrad (K ), circumrad (L))
the following inequality holds:

mianRd dH(K7 L) < COIlSt(T, R, d)dbL (:UJKa :uL)l/d

Our goals:  p Drop the assumptions on inrad/circumrad L (for inference)

» Replace the bounded-Lipschitz distance with a weaker one.

» Reconstruction result under random sampling
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A new distance between surface area measures

Definition: Support function of K, hyx : S ! - R

hi (u) := max,e g (u|p)

+# radial parameterization of 0K

Lemma: K C B(0,7) <= hg is r-Lipschitz and | hg | < r.

COI‘O"EII’y: Ci = {hK, K C B(O, 1)} C BL;

Definition: convex-dual distance between measure 1 and v on S¢1:

dC(M? V) -— INaXfeC, ’ fsd—l Jdp— fgd—l fdl/’

» Since C; C BLy, d¢ < dyr,; a stability result for d¢ is stronger.
» dc satisfies the triangle inequality, but do(p,v) =0 %4 u = v.

» However, for surface area measures, de(pug, ) =0 = ux = ur.
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1

» exponent % is most likely non-optimal (best possible: —=)

» to drop the requirement r < inrad(ur), R > circumrad(uy,), we

introduce the weak rotundity and exploit a lemma of Cheng and Yau.
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Weak rotundit

Definition: The weak rotundity of a measure 1 on S~ 1 is:

rotund(p) := min,cga—1 g4 1 max({y|v),0)d u(v)

» Lemma: rotund(u) > 0 <= u has non-degenerate support.

circumrad(K) ~ R area(0K) ~ R?~!
inrad(K) ~ ¢ rotund () ~ Ré~1e

K =B Y0,R) x [0, €]

» Cheng-Yau Lemma:
circumrad(K') < const(d)area(0K )% rotund (g ) !

inrad(K) > const(d)area(0K) % rotund (ux )®

» s rotund(u) stable under perturbations of p ?
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Definition:

he weak rotundity of a measure i on S9! is:

rotund(p) := min,cga—1 g4 1 max({ylv),0)d u(v)

Lemma: |rotund(u) — rotund(v)| < dga(u, v).

Proof: Let y € S 1, and S, =[0,y] C B(0,1). Then, hg, € Cy, and

hs, (v) = ir&&gx(a:\v}

(vly) if (v|y) >0
0 if (v|y) <0

= max((v]y), 0)

Letting f,(y) = [ca_: max((v]y),0)d u(v), this gives:

‘fﬂ( ) I/( )’ (Ua ) = MaXpeC, ’fsd—lhdﬂ_fgd—lhdy‘

One concludes using rotund(u) = min,cga-1 f.(y).
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Stability of weak rotundity

Definition: The weak rotundity of a measure 1 on S~ 1 is:

rotund(p) := min,cga—1 g4 1 max({ylv),0)d u(v)

Lemma: |rotund(u) — rotund(v)| < dga(u, v).

Corollary: Given K and u on S9! satisfying (zero mean), s.t.

do(px, p) < 5 rotund(pr)

Then there exists a convex set L such that u; = p.

Proof: rotund(pr) > rotund(pk) — de(pk, ) > 3 rotund(pg) > 0
Therefore p satisfies (non-degeneracy) and (zero-mean).

The result follows from Minkowski's theorem.
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6 12

» Analysis using the bound involving dy;, would give n™° and n—
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Reconstruction theorem: sketch of proof

» (i N = empirical measure constructed from the probability measure k.

1

Proposition: P(dc(urx N, ptr) >¢) <1 — Zexp(const(d)e%d — Ne?)

Proof: Using Chernoff's bound and the union bound, one has
IP’(dC(,uK,N,,uK) > 8) < 1 — 2/\/(61, 8) exp(—2N52)
where N (C1,e) = covering number of C; for ||.||o. Moreover,

1—d

Bronshtein’s theorem imply N (Cy,¢) < exp(const(d)e = ).

(NB: N (BL1,¢) = Q(exp(el™%))

» Conclusion uses the dg-stability of the weak rotundity and mean, and the
stability theorem using the convex-dual distance.
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Reconstruction theorem: an example

» Reconstruction of a unit cube from N = 300 random normal measurements,
with a uniform noise of 0.05 on the normals.
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» Computation: variational characterization of solutions to Minkowski problem.
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Main result: In order to reconstruct a convex body K with Hausdorff error n

and with probability 99%, one needs N random normal measurements with

N > const(K, d)n~2B3d+d")

Open question: how to improve the exponent of 1 ?

» Improve the exponent in the stability result. Seems difficult.

» Improve the metric used between measures, e.g.

A (1, v) i= maxser | [sus fd(p—v)

We replaced BL; with Cq, but an even smaller space would work:
FK,L — {hK, hL} U {hsy;y ~ Sd_l} U {h{y}, Y € Sd_l}.

However, the space i 1, depends on L. How to use this remark ?

Thank youl!



