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Motivation

I CEA-Leti has designed small sensors that can measure their orientation

I Applications in monitoring the deformations of a known surface S

accelerometer + magnetometer =⇒ oriented normal

already a non-convex inverse problem

I What happens if we throw sensors on S and measure normals only ?

Biard, Lacolle, Szafran (LJK) Huard, Sprynski (CEA)

input data = unorganized normals without positional information.

I Our goal: S = boundary of a convex body, random sampling.
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1. Minkowski problem
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Surface area measure

nK : ∂K → Sd−1

K
nK(x)x

In particular, µK(Sd−1) = area(∂K).

K = convex body in Rd Definition: The surface area measure µK
is a measure on Sd−1 defined by:

µK(B) = area({x ∈ ∂K;nK(x) ∈ B})
= area(n−1K (B))

ni

FiµP =
∑N
i=1 area(Fi)δni

P

Example: P ⊆ Rd is a polyhedron

Fi = ith face

ni = unit normal



5

Minkowski-Alexandrov theorem

Minkowski problem: Given a measure µ on Sd−1, find K with µK = µ.



5

Minkowski-Alexandrov theorem

Properties of µK : K = bounded convex body with non-empty interior

Minkowski problem: Given a measure µ on Sd−1, find K with µK = µ.



5

Minkowski-Alexandrov theorem

Properties of µK : K = bounded convex body with non-empty interior

(non-degeneracy) for all hyperplane H, µK(Sd−1 \H) 6= 0

Minkowski problem: Given a measure µ on Sd−1, find K with µK = µ.



5

Minkowski-Alexandrov theorem

Properties of µK : K = bounded convex body with non-empty interior

(non-degeneracy) for all hyperplane H, µK(Sd−1 \H) 6= 0

Avoids this situation:

If L ⊆ Rd−1, and K = L× R, then nK(∂K) ⊆ Sd−2 × {0}

L

K

Minkowski problem: Given a measure µ on Sd−1, find K with µK = µ.
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Minkowski-Alexandrov theorem

Properties of µK : K = bounded convex body with non-empty interior

(non-degeneracy) for all hyperplane H, µK(Sd−1 \H) 6= 0

(zero-mean) mean(µK) :=
∫
Sd−1 v dµK(v) = 0

Theorem (Minkowski-Alexandrov): Given any measure µ on Sd−1,

which satisfies (non-degeneracy) and (zero-mean), there exists

a convex body K with µ = µK . This body is unique up to translation.

Minkowski problem: Given a measure µ on Sd−1, find K with µK = µ.
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Stability in Minkowski theorem

Definition: dbL(µ, ν) = maxf∈BL1 |
∫
Sd−1 f dµ−

∫
Sd−1 f d ν|, where

BL1 = 1-Lipschitz functions bounded by 1 on Sd−1
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Stability in Minkowski theorem

Definition: dbL(µ, ν) = maxf∈BL1 |
∫
Sd−1 f dµ−

∫
Sd−1 f d ν|, where

BL1 = 1-Lipschitz functions bounded by 1 on Sd−1

dbL(µ, ν) = Wass1(µ, ν) when µ(Sd−1) = ν(Sd−1).
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R ≥ max(circumrad(K), circumrad(L))

I Drop the assumptions on inrad/circumrad L (for inference)

I Replace the bounded-Lipschitz distance with a weaker one.

I Reconstruction result under random sampling

Our goals:
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∫
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2. Improved stability theorem
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A new distance between surface area measures

0

K

u

Definition: Support function of K, hK : Sd−1 → R



8

A new distance between surface area measures

0

K

u

hK(u)

Definition: Support function of K, hK : Sd−1 → R
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6= radial parameterization of ∂K
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A new distance between surface area measures

0

K

u

hK(u)

Definition: Support function of K, hK : Sd−1 → R
hK(u) := maxp∈K〈u|p〉

Lemma: K ⊆ B(0, r) ⇐⇒ hK is r-Lipschitz and |hK | ≤ r.

Corollary: C1 := {hK ;K ⊆ B(0, 1)} ⊆ BL1

Definition: convex-dual distance between measure µ and ν on Sd−1:

dC(µ, ν) := maxf∈C1 |
∫
Sd−1 f dµ−

∫
Sd−1 f d ν|

I Since C1 ⊆ BL1, dC ≤ dbL; a stability result for dC is stronger.

I dC satisfies the triangle inequality, but dC(µ, ν) = 0 6⇒ µ = ν.

I However, for surface area measures, dC(µK , µL) = 0⇒ µK = µL.

6= radial parameterization of ∂K
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Stability theorem for the convex-dual distance

Theorem (Abdallah-M. ’13): Given a convex body K and µ a measure

minx∈Rd dH(K,L) ≤ const(K)dC(µK , µL)1/d

on Sd−1 such that dC(µK , µ) ≤ ε0(K), there exists a convex body L

such that µ = µL and moreover
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Stability theorem for the convex-dual distance

Theorem (Abdallah-M. ’13): Given a convex body K and µ a measure

minx∈Rd dH(K,L) ≤ const(K)dC(µK , µL)1/d

on Sd−1 such that dC(µK , µ) ≤ ε0(K), there exists a convex body L

such that µ = µL and moreover

I dbL → dC: same proof techniques as Diskant and Hug-Schneider.

I to drop the requirement r ≤ inrad(µL), R ≥ circumrad(µL), we

introduce the weak rotundity and exploit a lemma of Cheng and Yau.

I exponent 1
d is most likely non-optimal (best possible: 1

d−1 )
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Weak rotundity

Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)
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Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)

circumrad(K) ≤ const(d)area(∂K)
d

d−1 rotund(µK)−1

inrad(K) ≥ const(d)area(∂K)−d rotund(µK)d

R

ε

circumrad(K) ' R
inrad(K) ' ε

area(∂K) ' Rd−1

rotund(µK) ' Rd−1ε

I Lemma: rotund(µ) > 0 ⇐⇒ µ has non-degenerate support.

I Cheng-Yau Lemma:

I Is rotund(µ) stable under perturbations of µ ?

K = Bd−1(0, R)× [0, ε]
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Stability of weak rotundity

Lemma: | rotund(µ)− rotund(ν)| ≤ dC(µ, ν).

Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)
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Sd−1 h dµ−

∫
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Letting fµ(y) =
∫
Sd−1 max(〈v|y〉, 0) dµ(v), this gives:

One concludes using rotund(µ) = miny∈Sd−1 fµ(y).

v

Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)
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Stability of weak rotundity

Lemma: | rotund(µ)− rotund(ν)| ≤ dC(µ, ν).

Corollary: Given K and µ on Sd−1 satisfying (zero mean), s.t.

dC(µK , µ) ≤ 1
2 rotund(µK)

Then there exists a convex set L such that µL = µ.
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Stability of weak rotundity

Lemma: | rotund(µ)− rotund(ν)| ≤ dC(µ, ν).

Corollary: Given K and µ on Sd−1 satisfying (zero mean), s.t.

dC(µK , µ) ≤ 1
2 rotund(µK)

Then there exists a convex set L such that µL = µ.

Proof: rotund(µL) ≥ rotund(µK)− dC(µK , µ) ≥ 1
2 rotund(µK) > 0

Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)
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Stability of weak rotundity

Lemma: | rotund(µ)− rotund(ν)| ≤ dC(µ, ν).

Corollary: Given K and µ on Sd−1 satisfying (zero mean), s.t.

dC(µK , µ) ≤ 1
2 rotund(µK)

Then there exists a convex set L such that µL = µ.

Proof: rotund(µL) ≥ rotund(µK)− dC(µK , µ) ≥ 1
2 rotund(µK) > 0

Therefore µ satisfies (non-degeneracy) and (zero-mean).

The result follows from Minkowski’s theorem.

Definition: The weak rotundity of a measure µ on Sd−1 is:

rotund(µ) := miny∈Sd−1

∫
Sd−1 max(〈y|v〉, 0) dµ(v)
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3. Reconstruction under random sampling
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Reconstruction theorem

Definition: Given a convex body K, a random normal measurement

is obtained by picking a random point x on ∂K and measuring nK(x).
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Reconstruction theorem

I For d = 2, N = Ω(η−5 log(1/p)), for d = 3, N = Ω(η−9 log(1/p)).

Theorem (Abdallah-M. ’13): Let K be a convex body w. area(∂K) = 1.

Then for η > 0, p ∈ (0, 1), and N random normal measurements with

N ≥ const(K, d)η−
1
2 (3d+d

2) log(1/p),

one can construct a convex body LN with P(dH(LN ,K) ≥ η) ≤ 1− p.

I Analysis using the bound involving dbL would give η−6 and η−12.

Definition: Given a convex body K, a random normal measurement

is obtained by picking a random point x on ∂K and measuring nK(x).
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I µK,N = empirical measure constructed from the probability measure µK .
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Reconstruction theorem: sketch of proof

I µK,N = empirical measure constructed from the probability measure µK .

I Conclusion uses the dC-stability of the weak rotundity and mean, and the
stability theorem using the convex-dual distance.

Proposition: P(dC(µK,N , µK) ≥ ε) ≤ 1− 2 exp(const(d)ε
1−d
2 −Nε2)

Proof: Using Chernoff’s bound and the union bound, one has

P(dC(µK,N , µK) ≥ ε) ≤ 1− 2N (C1, ε) exp(−2Nε2)

where N (C1, ε) = covering number of C1 for ‖.‖∞. Moreover,

Bronshtein’s theorem imply N (C1, ε) ≤ exp(const(d)ε
1−d
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Reconstruction theorem: an example

with a uniform noise of 0.05 on the normals.

I Reconstruction of a unit cube from N = 300 random normal measurements,
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Reconstruction theorem: an example

with a uniform noise of 0.05 on the normals.

I Reconstruction of a unit cube from N = 300 random normal measurements,

I Computation: variational characterization of solutions to Minkowski problem.
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Conclusion
Main result: In order to reconstruct a convex body K with Hausdorff error η

N ≥ const(K, d)η−
1
2 (3d+d

2).

and with probability 99%, one needs N random normal measurements with

Open question: how to improve the exponent of η ?

I Improve the exponent in the stability result. Seems difficult.

I Improve the metric used between measures, e.g.

dF(µ, ν) := maxf∈F |
∫
Sd−1 f d(µ− ν)|

We replaced BL1 with C1, but an even smaller space would work:

FK,L = {hK ,hL} ∪ {hSy ; y ∈ Sd−1} ∪ {h{y}; y ∈ Sd−1}.

However, the space FK,L depends on L. How to use this remark ?

Thank you!


