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Introduction



Planar straight-line drawings



0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 1 1 1
1 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 1 0
1 0 0 1 0 1 0 1 1
1 0 0 0 1 0 0 0 1
0 1 1 1 0 0 0 1 0
0 1 0 1 1 0 1 0 1
1 1 0 0 1 1 0 1 0


Adjacency matrix of graph G
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Combinatorial embedding

( = we know faces of G)
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Adjacency matrix of graph G

Combinatorial embedding
Planar straight-line drawing

( = we know faces of G)
f : V (G) → R2
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0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 1 1 1
1 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 1 0
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0 1 1 1 0 0 0 1 0
0 1 0 1 1 0 1 0 1
1 1 0 0 1 1 0 1 0


Adjacency matrix of graph G

Combinatorial embedding
Planar straight-line drawing Drawing on a grid

( = we know faces of G)
f : V (G) → R2 f : V (G) → N2
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0 1 1 1 1 1 0 0 1
1 0 1 0 0 0 1 1 1
1 1 0 1 0 0 1 0 1
1 0 1 0 1 0 1 1 0
1 0 0 1 0 1 0 1 1
1 0 0 0 1 0 0 0 1
0 1 1 1 0 0 0 1 0
0 1 0 1 1 0 1 0 1
1 1 0 0 1 1 0 1 0


Adjacency matrix of graph G

Combinatorial embedding
Planar straight-line drawing Drawing on a grid

Existence :

• Wagner ’36, Fary ’48

Algorithmes :

• Tutte ’63

• Fraysseix et al. ’89

• Schnyder’90

( = we know faces of G)
f : V (G) → R2 f : V (G) → N2



Drawing on the torus

⇔
Cut the torus along 2 non-
contractible cycles with a
common point.



Drawing on the torus

⇔

⇒ The drawing should be
x- and y-periodic.

Cut the torus along 2 non-
contractible cycles with a
common point.



Drawing on the torus

⇔

⇒

[Duncan et al., 2009]

The drawing should be
x- and y-periodic.

Bad example :

• not periodic;

• vertices on the
sides are not
identified.

Cut the torus along 2 non-
contractible cycles with a
common point.
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Some definitions

k-scheme triangulation is a quas-triangulation s.t.

• k marked outer vertices are called corners;

• each path of the outer face contour between
two consecutive corners is chordless.

1)



Some definitions

k-scheme triangulation is a quas-triangulation s.t.

• k marked outer vertices are called corners;

• each path of the outer face contour between
two consecutive corners is chordless.

G is a 4-scheme triangulation.
A straight-frame drawing of G is

• a planar straight-line drawing of G;

• the outer face is an axis-aligned rectangle;

• its corners are the corners of G.

1)

2)



Previous result. Straight-frame drawing.

k-scheme triangulation is a quas-triangulation s.t.

• k marked outer vertices are called corners;

• each path of the outer face contour between
two consecutive corners is chordless.

G is a 4-scheme triangulation.
A straight-frame drawing of G is

• a planar straight-line drawing of G;

• the outer face is an axis-aligned rectangle;

• its corners are the corners of G.

1)

2)

Theorem 1 [Duncan et al.] Each 4-scheme triangulation with n
vertices admits a straight-frame drawing on a grid of size O(n2×n).



Some definitions. Periodic case.

Denote the paths between consecutive corners by
S1, . . . , Sk. Then a 4-scheme triangulation satisfy-
ing |S1| = |S3| and |S2| = |S4| is called balanced.

1)



Some definitions. Periodic case.

Denote the paths between consecutive corners by
S1, . . . , Sk. Then a 4-scheme triangulation satisfy-
ing |S1| = |S3| and |S2| = |S4| is called balanced.

1)

2) Its straight-frame drawing is periodic if

• the abscissas of vertices of the same rank
along S1 and S3 coincide;

• the ordinates of vertices of the same rank
along S2 and S4 coincide.



Our result. Periodic case.

Denote the paths between consecutive corners by
S1, . . . , Sk. Then a 4-scheme triangulation satisfy-
ing |S1| = |S3| and |S2| = |S4| is called balanced.

Theorem 2 Each balanced 4-scheme-triangulation admits a peri-
odic straight- frame drawing on a (regular) grid of size O(n4×n4).

1)

2) Its straight-frame drawing is periodic if

• the abscissas of vertices of the same rank
along S1 and S3 coincide;

• the ordinates of vertices of the same rank
along S2 and S4 coincide.

Accepted on the LATIN2014



Sketch of the proof of the theorem 2
Let’s draw this balanced 4-scheme triangulation . . .



Step 1. Analysis of cords

• Suppose that there is no ”vertical” cord.

• Then there exists a closest to the upper-side cordless path.

• Each vertex of the path is on the dist. 1 from the upper-side.

• Let’s cut the graph along this path.



Step 2. Bottom part

• Need to take care only about left and right sides.

• Upper side should not be straight.

• Can find a river from upper to bottom side.

• Let’s cut along this river.

Bottom-left Bottom-right



Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.
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Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.

• Draw with incremental algorithm.
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Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.

• Draw with incremental algorithm.

• Remember the final distances between bottom vertices.
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Step 3. Bottom-left part
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Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.

• Draw with incremental algorithm.
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Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.

• Draw with incremental algorithm.

1 2 3

4

5 6
7 8

9
10

11
12 13 14

1 2 3

4
5

10

7

9



Step 3. Bottom-left part

• Turn by 90.

• Find a canonical order.

• Draw with incremental algorithm.

• Remember the distanced between vertices on the bottom side.
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Step 4. Whole bottom part

• Repeat the step 3 for right part.

• Place the parts one opposite other.



Step 4. Whole bottom part

• Repeat the step 3 for right part.

• Place the parts one opposite other.

• Adjust sizes.

• Fill a draw with edges of the river.



Step 5. Decomposition of upper part

• Cut to triangles

• Find an edge adjacent to the bottom river



Step 5. Decomposition of upper part

• Cut to triangles

• Find an edge adjacent to the bottom river

• Decompose the rest into 3 parts



Step 6. All together

• Draw every sub-part of upper part.



Step 6. All together

• Draw every sub-part of upper part.

• Paste all together.



Other applications



Geodesic spherical drawing

Algorithm:

• partition the faces of the initial graph;

• dessiner draw every rectangle according their lateral sides;

• construct a pyramid from the rectangles;

• place a small copy in the center of sphere;

• project its edges on the sphere.

vN
vN

S2vN vNG M



An arbitrary polygon

• Suppose we can draw an arbitrary quadrangle, it’s size
of grid is P (n)

• Using divide and conquer strategy we can draw any
k-gon

• Size of grid will be proportional to O(P (n)log k).


