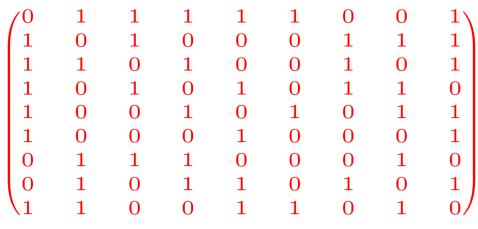
Periodic planar straight-frame graph drawings with polynomial resolution

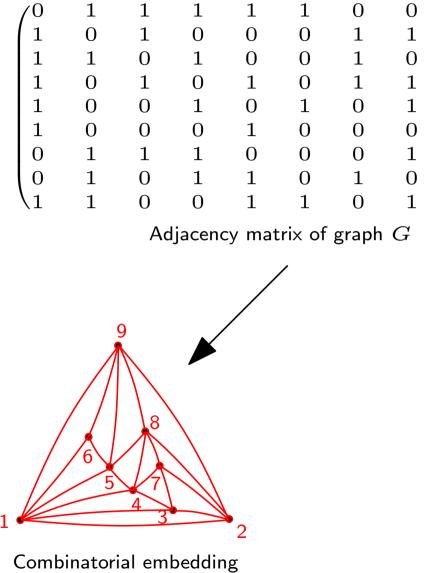
Luca Castelli Aleardi, Eric Fusy, Anatolii Kostrygin

Introduction

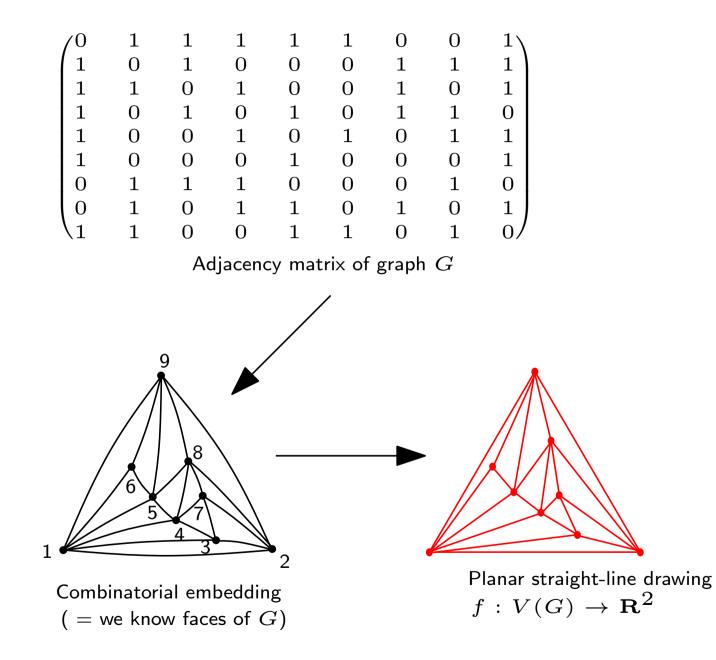


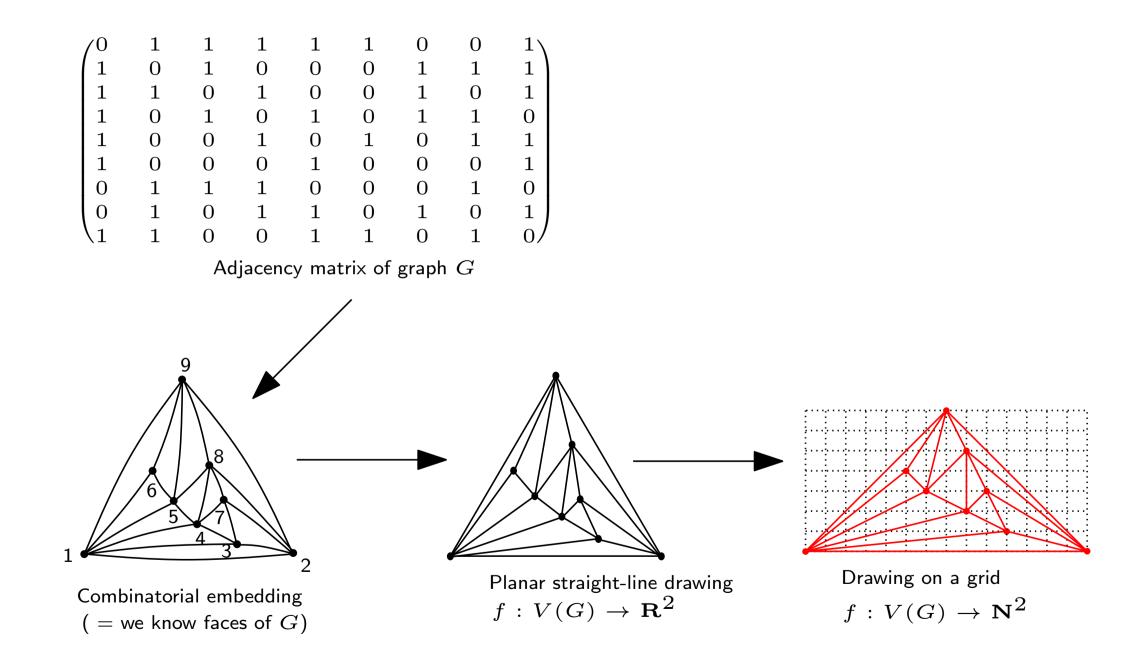
Adjacency matrix of graph G

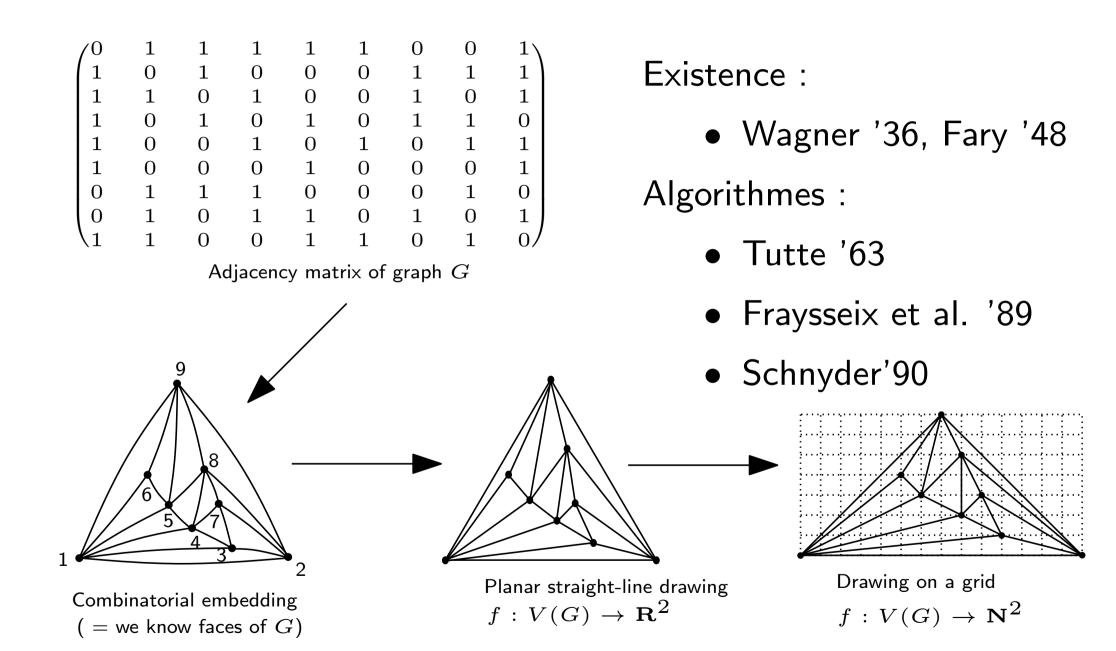
0/



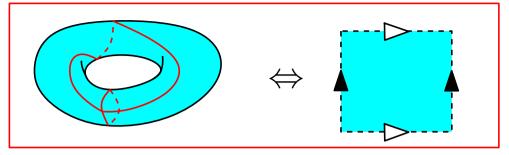
(= we know faces of G)





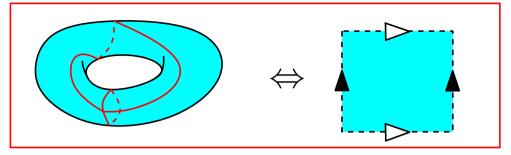


Drawing on the torus

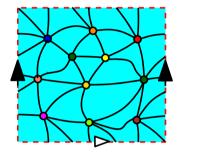


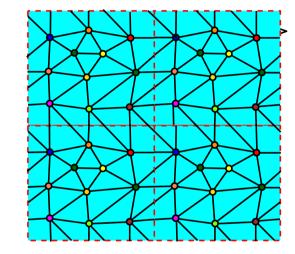
Cut the torus along 2 noncontractible cycles with a common point.

Drawing on the torus



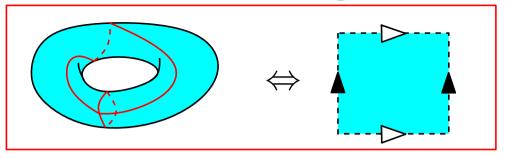
Cut the torus along 2 noncontractible cycles with a common point.



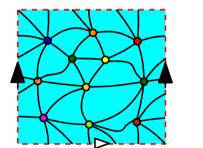


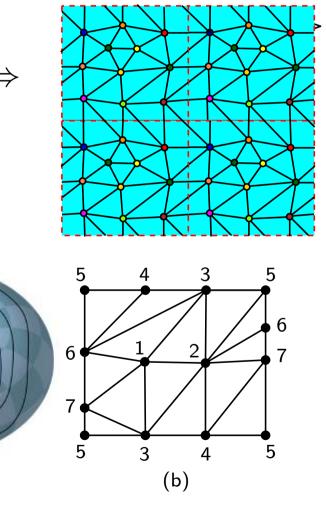
The drawing should be *x*- and *y*-periodic.

Drawing on the torus



Cut the torus along 2 noncontractible cycles with a common point.





The drawing should be *x*- and *y*-periodic.

Bad example :

- not periodic;
- vertices on the sides are not identified.

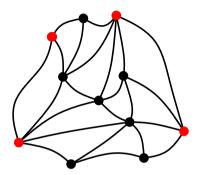
[Duncan et al., 2009]

(a)

Some definitions

1) k-scheme triangulation is a quas-triangulation s.t.

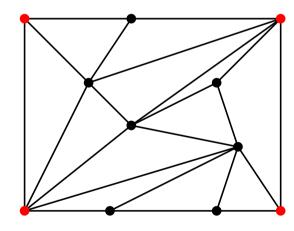
- k marked outer vertices are called **corners**;
- each path of the outer face contour between two consecutive corners is chordless.

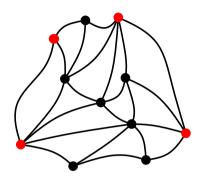


Some definitions

1) k-scheme triangulation is a quas-triangulation s.t.

- k marked outer vertices are called **corners**;
- each path of the outer face contour between two consecutive corners is chordless.
- 2) G is a 4-scheme triangulation. A straight-frame drawing of G is
 - a planar straight-line drawing of G;
 - the outer face is an axis-aligned rectangle;
 - its corners are the corners of G.



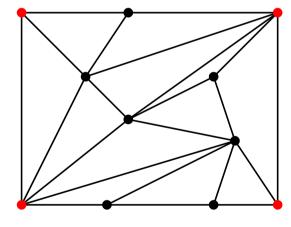


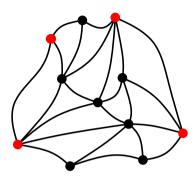
Previous result. Straight-frame drawing.

1) k-scheme triangulation is a quas-triangulation s.t.

- k marked outer vertices are called **corners**;
- each path of the outer face contour between two consecutive corners is chordless.
- 2) G is a 4-scheme triangulation. A straight-frame drawing of G is
 - a planar straight-line drawing of G;
 - the outer face is an axis-aligned rectangle;
 - its corners are the corners of G.

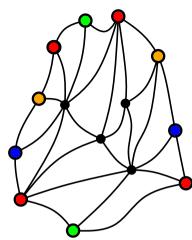
Theorem 1 [Duncan et al.] Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O(n^2 \times n)$.





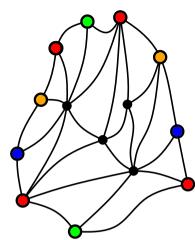
Some definitions. Periodic case.

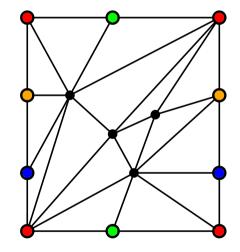
1) Denote the paths between consecutive corners by S_1, \ldots, S_k . Then a 4-scheme triangulation satisfying $|S_1| = |S_3|$ and $|S_2| = |S_4|$ is called balanced.



Some definitions. Periodic case.

- 1) Denote the paths between consecutive corners by S_1, \ldots, S_k . Then a 4-scheme triangulation satisfying $|S_1| = |S_3|$ and $|S_2| = |S_4|$ is called **balanced**.
- 2) Its straight-frame drawing is **periodic** if
 - the abscissas of vertices of the same rank along S_1 and S_3 coincide;
 - the ordinates of vertices of the same rank along S_2 and S_4 coincide.

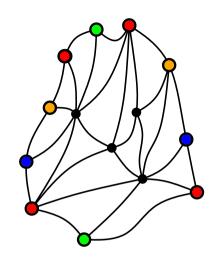


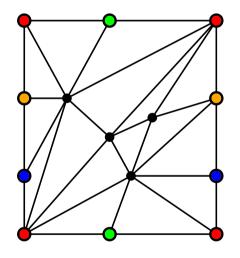


Our result. Periodic case.

- 1) Denote the paths between consecutive corners by S_1, \ldots, S_k . Then a 4-scheme triangulation satisfying $|S_1| = |S_3|$ and $|S_2| = |S_4|$ is called balanced.
- 2) Its straight-frame drawing is **periodic** if
 - the abscissas of vertices of the same rank along S_1 and S_3 coincide;
 - the ordinates of vertices of the same rank along S_2 and S_4 coincide.

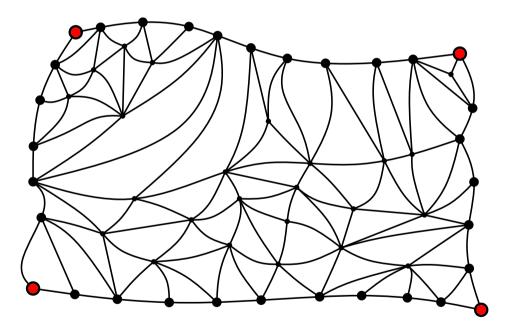
Theorem 2 Each balanced 4-scheme-triangulation admits a periodic straight- frame drawing on a (regular) grid of size $O(n^4 \times n^4)$.





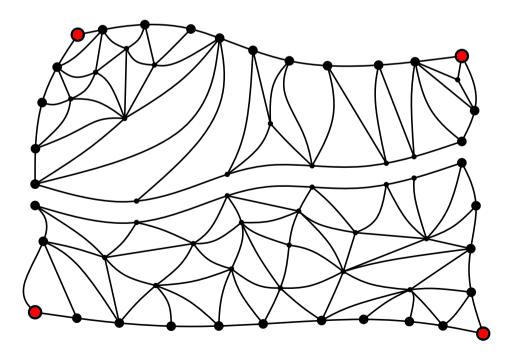
Sketch of the proof of the theorem 2

Let's draw this balanced 4-scheme triangulation ...



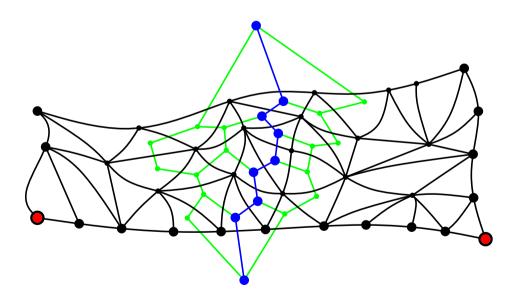
Step 1. Analysis of cords

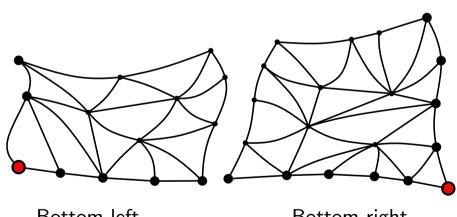
- Suppose that there is no "vertical" cord.
- Then there exists a closest to the upper-side cordless path.
- Each vertex of the path is on the dist. 1 from the upper-side.
- Let's cut the graph along this path.



Step 2. Bottom part

- Need to take care only about left and right sides.
- Upper side should not be straight.
- Can find a **river** from upper to bottom side.
- Let's cut along this river.

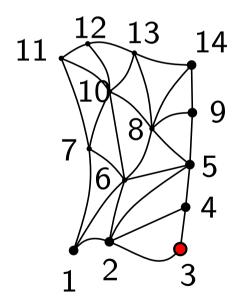




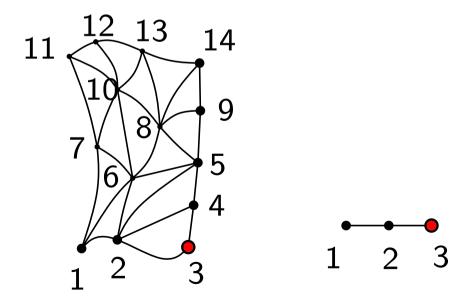
Bottom-left

Bottom-right

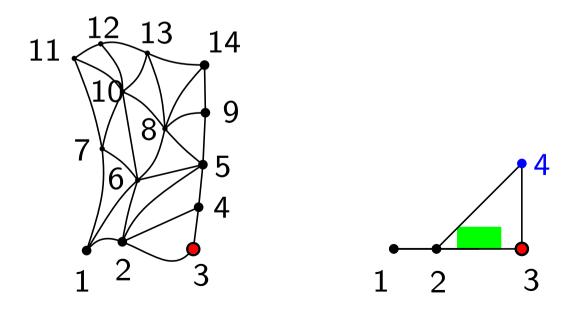
- Turn by 90.
- Find a canonical order.



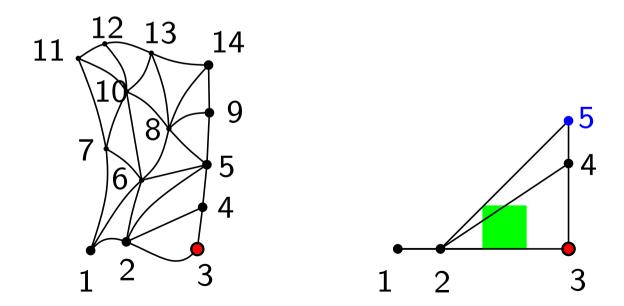
- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.



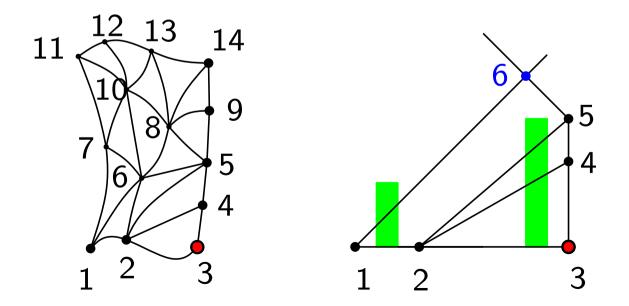
- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the final distances between bottom vertices.



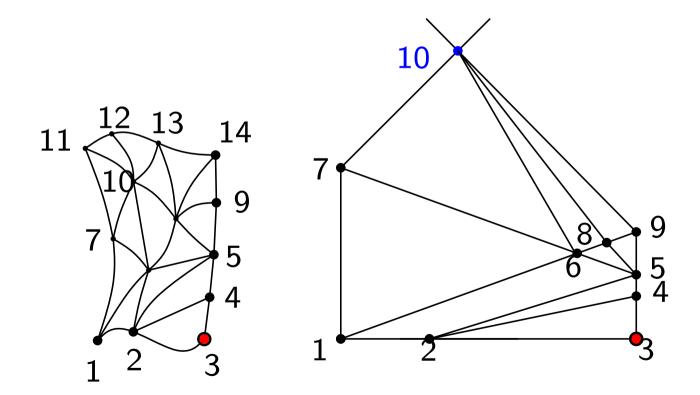
- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.



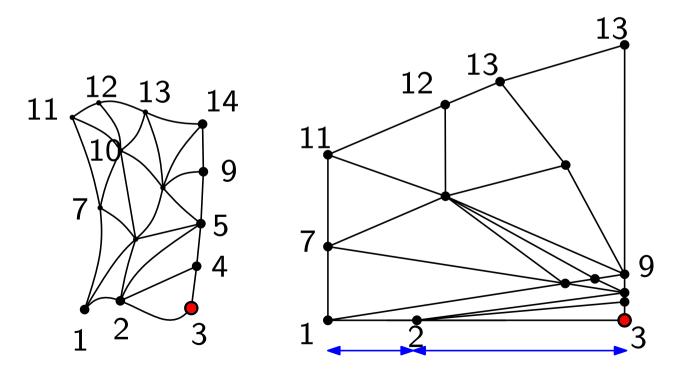
- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.



- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.

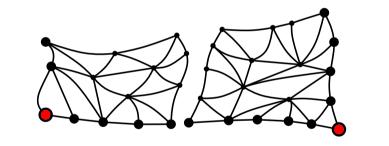


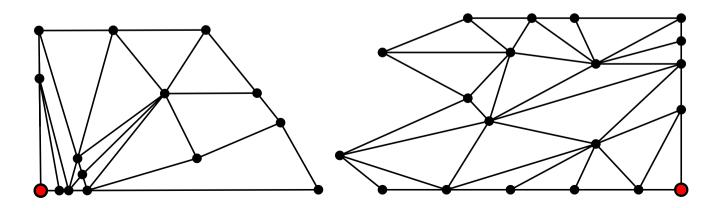
- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the distanced between vertices on the bottom side.



Step 4. Whole bottom part

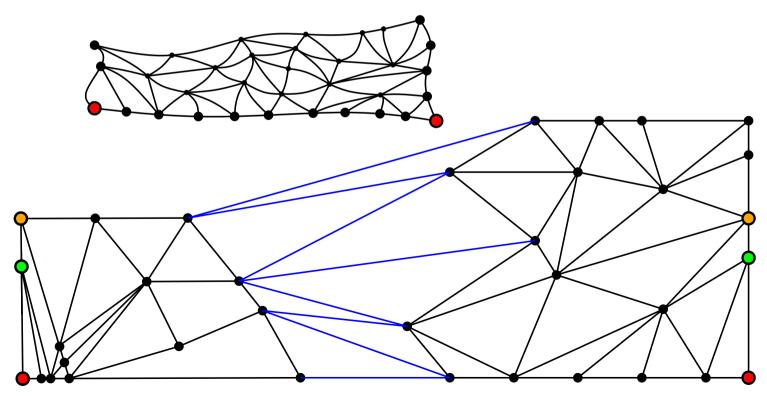
- Repeat the step 3 for right part.
- Place the parts one opposite other.





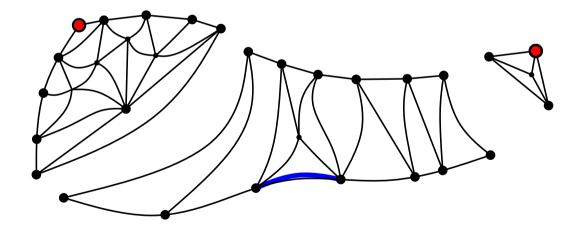
Step 4. Whole bottom part

- Repeat the step 3 for right part.
- Place the parts one opposite other.
- Adjust sizes.
- Fill a draw with edges of the river.



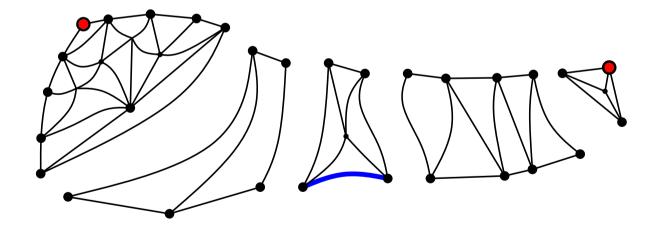
Step 5. Decomposition of upper part

- Cut to triangles
- Find an edge adjacent to the bottom river



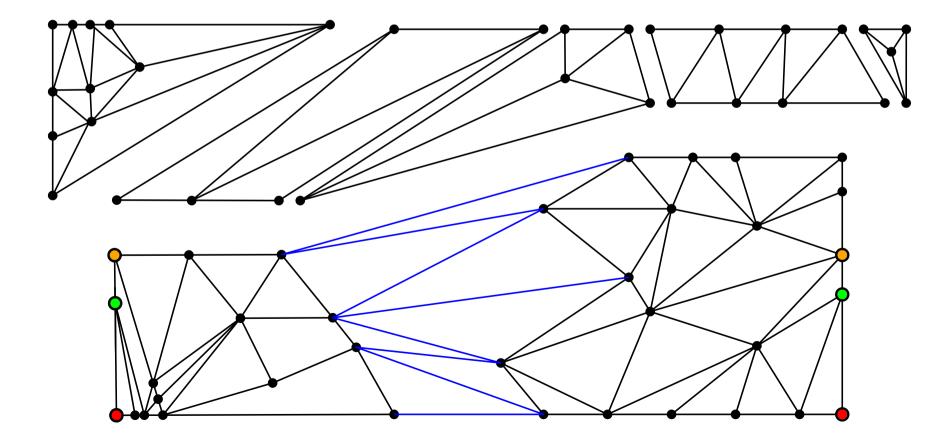
Step 5. Decomposition of upper part

- Cut to triangles
- Find an edge adjacent to the bottom river
- Decompose the rest into 3 parts



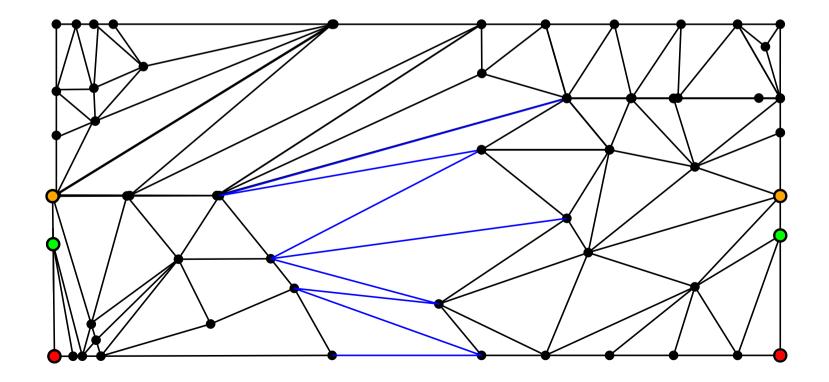
Step 6. All together

• Draw every sub-part of upper part.



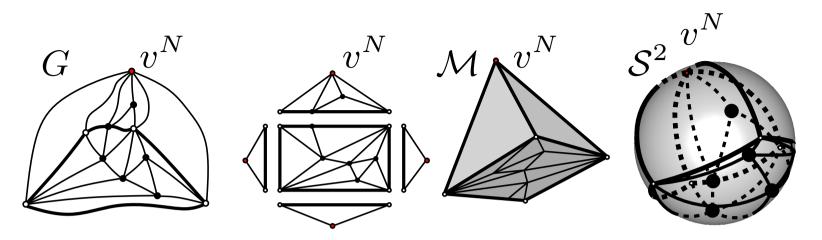
Step 6. All together

- Draw every sub-part of upper part.
- Paste all together.



Other applications

Geodesic spherical drawing



Algorithm:

- partition the faces of the initial graph;
- dessiner draw every rectangle according their lateral sides;
- construct a pyramid from the rectangles;
- place a small copy in the center of sphere;
- project its edges on the sphere.

An arbitrary polygon

- Suppose we can draw an arbitrary quadrangle, it's size of grid is P(n)
- Using divide and conquer strategy we can draw any $k\mbox{-}{\rm gon}$
- Size of grid will be proportional to $O(P(n)^{\log k})$.

