Periodic planar straight-frame graph drawings with polynomial resolution

Luca Castelli Aleardi, Eric Fusy, Anatolii Kostrygin

Introduction

Planar straight-line drawings

$$
\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Planar straight-line drawings
$\left(\begin{array}{ccccccccc}0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right)$

Combinatorial embedding
(= we know faces of G)

Planar straight-line drawings

$$
\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Combinatorial embedding
(= we know faces of G)

Planar straight-line drawing $f: V(G) \rightarrow \mathbf{R}^{2}$

Planar straight-line drawings

$$
\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Combinatorial embedding
(= we know faces of G)

Planar straight-line drawing $f: V(G) \rightarrow \mathbf{R}^{2}$

Drawing on a grid
$f: V(G) \rightarrow \mathbf{N}^{2}$

Planar straight-line drawings

$$
\left(\begin{array}{ccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Combinatorial embedding
(= we know faces of G)

Planar straight-line drawing $f: V(G) \rightarrow \mathbf{R}^{2}$

Existence :

- Wagner '36, Fary '48

Algorithmes :

- Tutte '63
- Fraysseix et al. '89
- Schnyder'90

Drawing on a grid
$f: V(G) \rightarrow \mathbf{N}^{2}$

Drawing on the torus

Cut the torus along 2 noncontractible cycles with a common point.

Drawing on the torus

Cut the torus along 2 noncontractible cycles with a common point.

The drawing should be x - and y-periodic.

Drawing on the torus

Cut the torus along 2 noncontractible cycles with a common point.

[Duncan et al., 2009]
The drawing should be x - and y-periodic.

Bad example :

- not periodic;
- vertices on the sides are not identified.

Some definitions

1) k-scheme triangulation is a quas-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

Some definitions

1) k-scheme triangulation is a quas-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.

A straight-frame drawing of G is

- a planar straight-line drawing of G;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G.

Previous result. Straight-frame drawing.

1) k-scheme triangulation is a quas-triangulation s.t.

- k marked outer vertices are called corners;
- each path of the outer face contour between two consecutive corners is chordless.

2) G is a 4-scheme triangulation.

A straight-frame drawing of G is

- a planar straight-line drawing of G;
- the outer face is an axis-aligned rectangle;
- its corners are the corners of G.

Theorem 1 [Duncan et al.] Each 4-scheme triangulation with n vertices admits a straight-frame drawing on a grid of size $O\left(n^{2} \times n\right)$.

Some definitions. Periodic case.

1) Denote the paths between consecutive corners by S_{1}, \ldots, S_{k}. Then a 4-scheme triangulation satisfying $\left|S_{1}\right|=\left|S_{3}\right|$ and $\left|S_{2}\right|=\left|S_{4}\right|$ is called balanced.

Some definitions. Periodic case.

1) Denote the paths between consecutive corners by S_{1}, \ldots, S_{k}. Then a 4 -scheme triangulation satisfying $\left|S_{1}\right|=\left|S_{3}\right|$ and $\left|S_{2}\right|=\left|S_{4}\right|$ is called balanced.

2) Its straight-frame drawing is periodic if

- the abscissas of vertices of the same rank along S_{1} and S_{3} coincide;
- the ordinates of vertices of the same rank along S_{2} and S_{4} coincide.

Our result. Periodic case.

1) Denote the paths between consecutive corners by S_{1}, \ldots, S_{k}. Then a 4 -scheme triangulation satisfying $\left|S_{1}\right|=\left|S_{3}\right|$ and $\left|S_{2}\right|=\left|S_{4}\right|$ is called balanced.

2) Its straight-frame drawing is periodic if

- the abscissas of vertices of the same rank along S_{1} and S_{3} coincide;
- the ordinates of vertices of the same rank along S_{2} and S_{4} coincide.

Theorem 2 Each balanced 4-scheme-triangulation admits a periodic straight- frame drawing on a (regular) grid of size $O\left(n^{4} \times n^{4}\right)$.

Sketch of the proof of the theorem 2

Let's draw this balanced 4-scheme triangulation ...

Step 1. Analysis of cords

- Suppose that there is no "vertical" cord.
- Then there exists a closest to the upper-side cordless path.
- Each vertex of the path is on the dist. 1 from the upper-side.
- Let's cut the graph along this path.

Step 2. Bottom part

- Need to take care only about left and right sides.
- Upper side should not be straight.
- Can find a river from upper to bottom side.
- Let's cut along this river.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the final distances between bottom vertices.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.

Step 3. Bottom-left part

- Turn by 90.
- Find a canonical order.
- Draw with incremental algorithm.
- Remember the distanced between vertices on the bottom side.

Step 4. Whole bottom part

- Repeat the step 3 for right part.
- Place the parts one opposite other.

Step 4. Whole bottom part

- Repeat the step 3 for right part.
- Place the parts one opposite other.
- Adjust sizes.
- Fill a draw with edges of the river.

Step 5. Decomposition of upper part

- Cut to triangles
- Find an edge adjacent to the bottom river

Step 5. Decomposition of upper part

- Cut to triangles
- Find an edge adjacent to the bottom river
- Decompose the rest into 3 parts

Step 6. All together

- Draw every sub-part of upper part.

Step 6. All together

- Draw every sub-part of upper part.
- Paste all together.

Other applications

Geodesic spherical drawing

Algorithm:

- partition the faces of the initial graph;
- dessiner draw every rectangle according their lateral sides;
- construct a pyramid from the rectangles;
- place a small copy in the center of sphere;
- project its edges on the sphere.

An arbitrary polygon

- Suppose we can draw an arbitrary quadrangle, it's size of grid is $P(n)$
- Using divide and conquer strategy we can draw any k-gon
- Size of grid will be proportional to $O\left(P(n)^{\log k}\right)$.

