Cone Walk
 Navigating a random Delaunay triangulation

Nicolas Broutin, Olivier Devillers, Ross Hemsley

December 18, 2013

Planar Graph Navigation

Input Planar graph $G(V, E), p \in V, \quad q \in \mathbb{R}^{2}$
Output $N N$ of $q \in V, \quad$ path $\subseteq V$

Point location in Geometric Data structures

 (Delaunay Triangulation)Want pointer to face containing a point

Point location in Geometric Data structures

 (Delaunay Triangulation)Want pointer to face containing a point

- Useful subroutine

Point location in Geometric Data structures

(Delaunay Triangulation)

Want pointer to face containing a point

- Useful subroutine
- \Rightarrow Complexity bound useful elsewhere

Some assumptions...

- Smooth Convex Domain $\mathcal{D}, \quad \operatorname{Area}(\mathcal{D})=1$

Some assumptions...

- Smooth Convex Domain $\mathcal{D}, \quad \operatorname{Area}(\mathcal{D})=1$
- Φ " n uniformly random points" in \mathcal{D} *

Some assumptions...

- Smooth Convex Domain $\mathcal{D}, \quad \operatorname{Area}(\mathcal{D})=1$
- Φ " n uniformly random points" in \mathcal{D} *
*Usually mean Poisson Process of rate 1

(Delaunay Triangulation)
Expected: $O(|p q| \sqrt{n})$ [Devroye et al.]

Terminates for DT

Trivial Bound: $O(n)$

In practice: really very efficient

Trivial Bound: $O(n)$

In practice: really very efficient

- Complicated dependance structure
- Non-Markovian

Wireless sensor networks.

Wireless sensor networks.

- Face Routing \Rightarrow Straight Walk

- Face Routing \Rightarrow Straight Walk

- Greedy Routing \Rightarrow Greedy Walk

New Results

Existance of algorithm with properties

- Deterministic
- $O(1)$-competitive

New Results

Existance of algorithm with properties

- Deterministic
- $O(1)$-competitive

Worst case on uniformly random input, $n \rightarrow \infty$

- $\left(\log ^{3+\xi} n\right)$-memoryless
- $O\left(|p q| \sqrt{n}+\log ^{5} n\right)$ vertices accessed
- $O\left(|p q| \sqrt{n} \log \log n+\log ^{5} n\right)$ steps

New Results

Existance of algorithm with properties

- Deterministic
- $O(1)$-competitive

Worst case on uniformly random input, $n \rightarrow \infty$

- $\left(\log ^{3+\xi} n\right)$-memoryless
- $O\left(|p q| \sqrt{n}+\log ^{5} n\right)$ vertices accessed
- $O\left(|p q| \sqrt{n} \log \log n+\log ^{5} n\right)$ steps

Bonus

- Stronger bound on degree of DT

Existance of algorithm with properties

- Deterministic
- O(1)-competitive?

Worst case on uniformly random input, $n \rightarrow \infty$

- $\left(\log ^{3+\xi} n\right)-$ memoryless
- $O\left(|p q| \sqrt{n}+\log ^{1} n\right)$ vertices accessed
- $O\left(|p q| \sqrt{n} \log \log n+\log ^{1} n\right)$ steps

Bonus

- Stronger bound on degree of DT

Cone Walk

Number of Cones

- 'Nearly’ iid rvs..

Number of Cones

- 'Nearly’ iid rvs..
- Clever conditioning + Hoeffding type inequalities

Number of Cones

- 'Nearly’ iid rvs..
- Clever conditioning + Hoeffding type inequalities
$\Rightarrow O(|p q| \sqrt{n})$ cones

Number of Cones

- 'Nearly’ iid rvs..
- Clever conditioning + Hoeffding type inequalities
$\Rightarrow O(|p q| \sqrt{n})$ cones

Sites Accessed

Sites Accessed

Sites Accessed

Sites Accessed

Sites Accessed

Sites Accessed

Stronger Degree Bound in DT

Stronger Degree Bound in DT

Border of process

$$
\mathbb{P}\left(\Delta_{\phi \backslash \phi^{*}}>\log ^{3} n\right) \leq \frac{1}{n}
$$

$$
\mathbb{P}\left(\Delta_{\Phi}>\log ^{2+\xi} n\right)<\exp \left(-\log ^{1+\xi / 4} n\right)
$$

$\xi>0, n$ large enough

Corollaries

- Memorylessness
- Algorithmic Complexity

Thanks

- No deterministic memoryless algo with constant competitiveness on arbitrary triangulation [Bose et al.]
- No competitive algorithm under link length for DT [Bose et al.]
- No algorithm better than random walk, for arbitrary convex subdivision [Devroye et al.]

