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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So

“2 + 3” =

“2× 3” =

“5/2” =

“23” =

“
√
−1” =
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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So
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(
7 0
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1
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The notation a ⊕ b := max(a, b), a � b := a + b,
0 := −∞, 1 := 0 is also used in the tropical/max-plus
litterature

Max-plus semiring: Rmax = (R ∪ {−∞},max,+).
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The sister algebra: min-plus

“a + b” = min(a, b) “a × b” = a + b

“2 + 3” = 2

“2× 3” = 5

Min-plus semiring: Rmin.
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Structures called idempotent

a + a = a

or of characteristic one. Compare with

(p + 1)a = a .
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Exercises (cont)

Find the roots of the max-plus polynomial
“1−1X 3 + X 2 + 2X + 11”.
Nota bene: “1a ” = 1× a = a is unambiguous,
compare “1” = 0 with “11” = 1.

Answer:
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Exercises (cont)

Find the roots of the max-plus polynomial
“1−1X 3 + X 2 + 2X + 11”.
Nota bene: “1a ” = 1× a = a is unambiguous,
compare “1” = 0 with “11” = 1.
Answer: max(−1 + 3X , 2X , 2 + X , 1)
= −1 + max(X ,−1) + 2 max(X , 1.5)
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Exercises (cont)

Find the roots of the max-plus polynomial
“1−1X 3 + X 2 + 2X + 11”.
Nota bene: “1a ” = 1× a = a is unambiguous,
compare “1” = 0 with “11” = 1.
Answer:
“1−1X 3 + X 2 + 2X + 11 = 1−1(X + 1−1)(X + 13/2)2”
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Theorem (Cuninghame-Green & Meijer, 80)

A max-plus polynomial function p = “anX n + · · ·+ a0”
can be factored uniquely as

p = “an(X + α1) . . . (X + αn)”

= an + max(X , α1) + · · ·+ max(X , αn) .

The αi are the (tropical) roots.

How to compute (tropical) roots?
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Legendre-Fenchel = tropical Fourier transform

The map which sends coeffs: (i 7→ ai) to the numerical
function

X 7→ p(X ) = max
06i6n

ai + i × X

is a special case of Legendre-Fenchel transform

f : Rn → R, f ? : Rn → R ∪ {+∞},
f ?(p) = sup

x∈Rn

〈p, x〉 − f (x) .

f (i) = −ai if i ∈ N, f (i) = +∞ otherwise
f ? = g ? iff lscvex(f ) = lscvex(g)
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Newton polygon

∆(p) = lower concave hull{(i , ai) | 0 6 i 6 n}.
Proposition

Let p ∈ Rmax[X ] be a max-plus polynomial. Roots of p =
minus slopes of ∆(p). Multiplicity of root α = length of
the interval of ∆(p) of slope −α. [Linear time]

“p = 1−1X 3 + 10X 2 + 12X + 11”. The tropical roots are
−1 (multiplicity 1) and 1.5 (multiplicity 2).
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Exercises (cont.)

Approximate essentially without computation the
(usual) roots of

p = 2−2 + 22X − 25X 4 + 2X 6 ∈ C[X ]

Answer: −2−4, 2−1{1, j , j2}, 22{1,−1},
-0.0625 -0.25-0.433i -0.25+0.433i 0.5 4. - 4.

Check in Scilab:
-0.0624 -0.226-0.434i -0.226+0.434i 0.522 4.00 -4.00
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Solution: Associate to
∑

k akX k ∈ C[X ] the max-plus
polynomial

X 7→ max
k

log2 |ak |+ kX .

p = 2−2 + 22X − 25X 4 + 21X 6, tropical roots are −4
(mult. 1), −1 (mult. 3), 2 (mult. 2)
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Theorem (Hadamard, Ostrowski, Polyá)

Let p =
∑

k akX k with roots ζi ∈ C, |ζ1| > . . . > |ζn|,
α1 > . . . > αn tropical roots of maxk log |ak |+ kX .

1

C k
n

exp(α1 + · · ·+ αk)

6 |ζ1 · · · ζk | 6 cstk exp(α1 + · · ·+ αk)

Corollary

cst′′n,k exp(αk) 6 |ζk | 6 cst′n,k exp(αk)
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Hadamard: cstk 6 k + 1 (1891, memoir on Zeta function)
Ostrowski: lower bound, cstk 6 2k + 1 (1940, Graeffe
method)
Polyá cstk < e

√
k + 1 (reproduced by Ostrowski).

Proof = variation on Jensen formula

|a0|Rk

|ζn · · · ζn−k+1|
6 exp(

1

2π

∫ 2π

0

log |f (Re iθ)|dθ), ∀R > 0

Akian, SG, Sharify arXiv:1304.2967; more bounds, matrix extension;

decomposition results in Bini, Noferini, Sharify arXiv:1206.3632
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One more exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0
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One more exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0

L1
ε ∼ ε−1/3, L2

ε ∼ jε−1/3, L3
ε ∼ j2ε−1/3.
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One more exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0

L1
ε ∼ ε−1/3, L2

ε ∼ jε−1/3, L3
ε ∼ j2ε−1/3.

Answer without computation using tropical algebra,
solution later in this lecture
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A partial history of max-plus / tropical algebra
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In the late 80’s in France, the term “algèbres exotiques”
was used
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The term “exotic” appeared also in the User’s guide of
viscosity solutions of Crandall, Ishii, Lions (Bull. AMS,
92)
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The term “tropical” is in the honor of Imre Simon,

1943 - 2009

who lived in Sao Paulo (south tropic).

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, I CIRM 18 / 67



These algebras were invented by various schools in the
world
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Cuninghame-Green 1960- OR (scheduling, optimization)

Vorobyev ∼65 . . . Zimmerman, Butkovic; Optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii, Shpiz. . . Quasi-classic
analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Leung, Pin, Krob, . . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83- . . . Olsder, Baccelli, S.G., Akian discrete event
systems, optimal control, idempotent probabilities, linear algebra

Nussbaum 86- Nonlinear analysis, dynamical systems, also related work in
linear algebra, Friedland 88, Bapat ˜94

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- max-plus approximation of HJB

Del Moral ∼95 Puhalskii ∼99, idempotent probabilities.
Since 2000’ in pure maths, tropical geometry: Viro, Mikhalkin, Passare,
Sturmfels . . . , recent work by Connes, Consani
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Menu: applied tropical geometry, connections

between. . .

tropical convexity

dynamic programming / zero-sum games

Perron-Frobenius theory

metric geometry
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

“ax + by + c”

is attained at least twice.

max(x , y , 0)
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

max(a + x , b + y , c)

is attained at least twice.

max(x , y , 0)
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Two generic tropical lines meet at a unique point
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By two generic points passes a unique tropical line
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non generic case
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non generic case resolved by perturbation
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Tropical segments:

f

g

[f , g ] := {“λf + µg” | λ, µ ∈ R∪ {−∞}, “λ+ µ = 1”}.

(The condition “λ, µ > 0” is automatic.)
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Tropical segments:

f

g

[f , g ] := { sup(λ + f , µ + g) | λ, µ ∈
R ∪ {−∞}, max(λ, µ) = 0}.

(The condition λ, µ > −∞ is automatic.)
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C

Tropical convex cone: ommit “λ + µ = 1”, i.e., replace
[f , g ] by {sup(λ + f , µ + g) | λ, µ ∈ R ∪ {−∞}}
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Homogeneization

A convex set C in Rn
max is a cross section of a convex

cone Ĉ in Rn+1
max ,

Ĉ := {(λ + u, λ) | u ∈ C , λ ∈ Rmax}
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A tropical polytope with four vertices

Structure of the polyhedral complex: Develin, Sturmfels
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The previous drawing was generated by Polymake of Gawrilow and
Joswig, in which an extension allows one to handle easily tropical
polyhedra. They were drawn with javaview.

See Joswig arXiv:0809.4694 for more information.

Tropical polyhedra handled by ocaml TPLib, Allamigeon
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Motivation ?
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The tropical point of view arises with log glasses
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, I CIRM 31 / 67



Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

|y | 6 |x |+ 1, |x | 6 |y |+ 1, 1 6 |x |+ |y |
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

X := log |x |, Y := log |y |
Y 6 log(eX + 1), X 6 log(eY + 1), 0 6 log(eX + eY )
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Viro’s log-glasses, related to Maslov’s dequantization

a +h b := h log(ea/h + eb/h), h→ 0+

With h-log glasses, the amoeba of the line retracts to the
tropical line as h→ 0+

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

max(a, b) 6 a +h b 6 h log 2 + max(a, b)
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Tropical convex sets are deformations of classical convex
sets

Briec and Horvath 04

[a, b] := {λa +p µb, λ, µ > 0, λ +p µ = 1}

a +p b = (ap + bp)1/p
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See Passare & Rullgard, Duke Math. 04

Introduction to amoebas: lecture notes by Alain Yger.

Metric estimates: Avendaño, Kogan, Nisse, Rojas,

arXiv:1307.3681
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Nonarchimedean valuation point of view

Alternatively [Sturmfels’ point of view], the tropical line
“max(X ,Y , 0) attained twice” can be seen as the image
by the valuation of the line x + y + 1 over the field of
complex Puiseux series, C{{t}}, equipped with the
valuation val s = − smallest exponent of s.

E.g., val(t−1/2 − t + 7t3/2 + . . . ) = 1/2

val(z1 + z2) 6 max(val(z1), val(z2)), with equality when
val(z1) 6= val(z2).

val(z1z2) = val(z1) + val(z2)
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tropical hyperplanes (complex version)

Given a ∈ Rn
max, a 6≡ −∞,

H := {x ∈ Rn
max | “ax = 0”}
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tropical hyperplanes (complex version)

Given a ∈ Rn
max, a 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi attained twice}

x2x1

x3

max(x1, x2,−2 + x3)
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The rational points of tropical hyperplanes are images of
hyperplanes of (C{{t}})n by the valuation, see:

Theorem (Kapranov)

Given p =
∑

α pαzα ∈ C{{t}}[z1, . . . , zn], and Z ∈ Qn,

∃z ∈ (C{{t}})n, p(z) = 0, Z = val z

iff
max
α

val pα + 〈α,Z 〉 attained twice

Restriction to Q can be avoided by working with Puiseux series with

real exponents (Markwig) or Hahn series (well ordered support), cvg

issues: van den Dries Ran∗ o-minimal model.
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real tropical hyperplanes

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞,

∀i ,
H := {x ∈ Rn

max | “ax = bx”}
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real tropical hyperplanes

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞,

∀i ,

H := {x ∈ Rn
max | max

16i6n
ai + xi = max

16i6n
bi + xi}

x2x1

x3

x1 = max(x2,−2 + x3)
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real tropical hyperplanes

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞,

∀i ,

H := {x ∈ Rn
max | max

16i6n
ai + xi = max

16i6n
bi + xi}

x2x1

x3

x2 = max(x1,−2 + x3)
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real tropical hyperplanes

Given a, b ∈ Rn
max, a, b 6≡ −∞, ai = −∞ or bi = −∞,

∀i ,

H := {x ∈ Rn
max | max

16i6n
ai + xi = max

16i6n
bi + xi}

x2x1

x3

−2 + x3 = max(x1, x2)
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Real tropical hyperplanes are images of hyperplanes of
R{{t}} by the valuation.
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Given any n points in Rn
max in general position, there

is a unique (complex) affine tropical hyperplane
passing through them. Richter-Gebert, Sturmfels, Theobalt,

05,

Given any n points in Rn
max in general position, there

is a unique real affine tropical hyperplane passing
through them. Max Plus, 90, see also Akian, SG, Guterman

09

Let these points be given by the columns of a (n + 1)× n
matrix M , in projective coordinates. The vector a such
that H = {x | “a · x = 0”} contains the points is solution
of “aM = 0”. Hence, ai = “(−1)iDi”, where Di is the ith
Cramer determinant (delete row i of M).
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How are Cramer det defined?

For the complex (RGST 05) version, ignore sign

det A = “
∑
σ

sgn
∏
i

Aiσ(i)” = max
σ

∑
i

Aiσ(i)

This is an optimal assignment problem

For the real (Max Plus 90) version, the signs of the
maximising permutations tells on which side of the
equality “ax = bx” the coefficients should be put.

general position: only one opt assignment.
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Proofs

Extensions of tropical semiring, Maxplus 90, Akian, SG,

Guterman, 09, 13, Izhakian, Rowen 09, related formalism :
Krasner hyperfield 57 (different axioms but comparable
expressivity)

Coherent matching fields Richter-Gebert, Sturmfels,

Theobalt, 05, building on Sturmfels and Zelevinsky, The
Newton polytope of the product of maximal minors of
a (n + 1)× n matrix is a transportation polytope.
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The symmetrized tropical semiring

Recall that Z = N2/∇, where (a′, a′′)∇(b′, b′′) if
a′ + b′′ = a′′ + b′, −(a′, a′′) = (a′′, a′).
Replace N by Rmax, Smax = R2

max/ ∼
a ∼ b if a = b or (a∇b and a, b 6 ∇0).

Smax = Rmax ∪ 	Rmax ∪ R•max; u = (u, 0), 	u = (0, u),
u• := u 	 u = (u, u) with u ∈ Rmax.

S∨max := Rmax ∪ 	Rmax: signed elements.

E.g., 2⊕ (	3) = 	3, but 3	 3 = 3•. Think of u as
Θ(tu), u• = O(tu), Θ(t2)−Θ(t3) = −Θ(t3) but
Θ(t3)−Θ(t3) = O(t3).
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x1 = max(2 + x2, 7 + x3) ⇐⇒ x1 	 2x2 	 7x3∇0

Need to solve aM∇0, where M is of (n + 1)× n,
a ∈ Sn+1

max .

Theorem (Transfer theorem)

Any polynomial identity valid in rings is valid in the
extensions of semirings.

Akian, SG, Guterman 09, using an idea of Reutenauer and

Straubing 86.
Eg PA(A) = 0 becomes P+

A (A) = P−A (A), or PA(A)∇0,
where PA characteristic polynomial.
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Lemma (Elimination)

x∇b, cx∇d, x ∈ S∨max implies cb∇d.

Cramer theorem is proved by Gaussian elimination

Izhakian introduced the bi-valued tropical semiring,
2⊕ 2 = 2•, to remind that max is attained twice. The
“complex” tropical Cramer theorem is proved along the
same lines.
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | “ax 6 bx”}
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3

max(x1, x2,−2 + x3)
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max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3

x1 6 max(x2 − 2 + x3)
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3

max(x2 − 2 + x3) 6 x1
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Tropical sesquilinear form and Hilbert’s metric

x/v := max{λ | “λv” 6 x}
= min

i
(xi − vi) if x , v ∈ Rn .

δ(x , y) = “(x/y)(y/x)” = min
i

(xi − yi) + min
j

(yj − xi)

d = −δ is the (additive) Hilbert’s projective metric

d(x , y) = ‖x − y‖H , ‖z‖H := max
16i6d

zi − min
16i6d

zi .
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Hilbert’s metric on an open convex set

a

b

ā

b̄

b̄
b

a
ā

dH(a, b) = log
|b − ā||a − b̄|
|a − ā|||b − b̄|

.

disc: Klein model of the hyperbolic space;
simplex: dH conjugate to the additive (tropical) Hilbert
metric (take exp : Rn → Rn

+ and a cross section of Rn
+).
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e1 e2

e3

A ball in Hilbert’s metric is classically and tropically
convex.
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Projection on a tropical cone

If the tropical convex cone C ⊂ Rn
max generated by U is

stable by arbitrary sups (closed in Scott topology -non-Haussdorf-):

PC (x) = max{v ∈ C | v 6 x}
= max

u∈U
(x/u) + u .

Similar to PC (x) =
∑
u∈U

〈x , u〉u

C = Col(A), [PC (x)]i = max
k∈[p]

min
j∈[n]

(Aik−Ajk+xj), i ∈ [n]

Cuninghame-Green; Gondran, Minoux; Cohen, SG, Quadrat; Ardila; Joswig,

Sturmfels, Yu
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Best approximation in Hilbert’s projective metric

Prop.(Cohen, SG, Quadrat, in Bensoussan Festschrift 01)

d(x ,PV(x)) = min
y∈V

d(x , y) .
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Separation

Goes back to Zimmermann 77, simple geometric
construction in Cohen, SG, Quadrat in Ben01, LAA04.
C closed linear cone of Rd

max, or complete semimodule
If y 6∈ C , then, the tropical half-space

H := {v | y/v 6 PC (y)/v}

contains C and not y .
Compare with the optimality condition for the projection
on a convex cone C : 〈y − PC (y), v〉 6 0,∀v ∈ C

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, I CIRM 54 / 67
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Corollary (Zimmermann; Samborski, Shpiz; Cohen, SG, Quadrat,

Singer; Develin, Sturmfels; Joswig. . . )

A tropical convex cone closed (in the Euclidean topology)
is the intersection of tropical half-spaces.

Rmax is equipped with the topology of the metric
(x , y) 7→ maxi |exi − eyi | inherited from the Euclidean
topology by log-glasses.

� The apex −PC (y) of the algebraic separating half-space H
above may have some +∞ coordinates, and therefore may not
be closed in the Euclidean topology (always Scott closed). The
proof needs a perturbation argument, this is where the
assumption that C is closed (and not only stable by arbitrary
sups = Scott closed) is needed.
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Separation of several convex sets / cyclic projections SG,

Sergeev, Fund. i priklad. mat. 07

If V1 ∩ · · · ∩ Vk = {“0”}, we can find half-spaces Hi such
that Hi ⊃ Vi and H1 ∩ · · · ∩ Hk = {“0”}. The apices of
these half-spaces are obtained from an eigenvector u of
the cylic projector

“PV1
· · ·PVk(u) = λu”
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The existence of such an eigenvector is obtained by a
technique from nonlinear analysis, case of −∞ entries
dealt with by perturbation (Collatz-Wielandt theorem),
more on this next lecture.
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Theorem (tropical Helly theorem, Briec and Horvath, 04)

If a finite collection of cones of Rd
max has a

“zero”intersection, then a subfamily of at most d of them
also has a “zero”intersection.

Proved by “dequantization” from classical Helly
(passing to the limit).

Alt proof by SG and Sergeev 07 by cyclic projection (at
each projection one coordinate decreases)
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Tropical Radon

In SG and Meunier, DCG09, Helly deduced from the tropical
Radon’s theorem: a subset of d + 1 vectors in dimension
d can be partitioned in two subsets generating cones with
a “non-zero”intersection.
Radon theorem follows from tropical Cramer theory (signs
provide partition).

x1x1

x2

x2

x3

x3

x4

x4
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More advanced results of tropical convex geometry, SG

and Meunier, DCG09

Barany’s Colorful Caratheodory Theorem
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More advanced results of tropical convex geometry, SG

and Meunier, DCG09

Barany’s Colorful Caratheodory Theorem . . . Tropical

r

r

r

b

b

b

g

g

g
C
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Tropical Tverberg’s theorem, SG and Meunier, DCG09.
Let X be a set of (d + 1)(q − 1) + 1 points in Rd

max.
Then there are q pairwise disjoint subsets X1,X2, . . . ,Xq

of X whose tropical convex hulls have a common point.

Deduced from the classical one by a limit argument, no
direct combinatorial proof known.
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Tropical Tverberg
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Tropical Tverberg
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Tropical Tverberg
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Dutch cheese conjecture

Let q > 2, d > 1. Sierksma conjectured that for every
(d + 1)(q − 1) + 1 points in Rd the number of unordered
Tverberg partitions is at least ((q − 1)!)d .

SG and Meunier, DCG09: True in the tropical setting!
(development of a “bipartite analogue” of Tverberg’s
theorem due to Lindström, 1970 and Tverberg, 71)

Unfortunately, it is not clear whether this can be
transferred to the classical case. In other words, there
may be no “Mikhalkin’s correspondence theorem” in the
case of inequalities (?)
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Menu of the next lectures

Tropical linear programming, classical linear
programming, and mean payoff games

Non-linear Perron-Frobenius theory

Infinite dimensional tropical convex sets,

Metric geometry / boundaries

max-plus approximation, curse of dim reduction in
optimal control
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Tropical convexity and its applications to

zero-sum games

Minilecture, Part II

Stephane.Gaubert@inria.fr

INRIA and CMAP, École Polytechnique

JGA, Marseille
December 16-20, 2013

Works with Akian, Allamigeon, Goubault, Guterman, Katz, Joswig,
Meunier, Sergeev, Walsh; highlight: PhD of Benchimol and Qu.
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Today

Equivalence between tropical linear programming and
mean payoff games
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | “ax 6 bx”}
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3

max(x2 − 2 + x3) 6 x1

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, II CIRM 3 / 40



A halfspace can always be written as:

max
i∈I−

ai + xi 6 max
j∈I+

bj + xj , I− ∩ I+ = ∅ .

Apex: vi := −max(ai , bi).

If v ∈ Rn, H is the union of sectors of the tropical
hyperplane with apex v :

max
16i6n

xi − vi attained twice

Halfspaces appeared in: Joswig 04; Cohen, Quadrat SG 00;

Zimmermann 77, . . .
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3

x2
x1

x3

2 + x1 6 max(x2, 3 + x3)
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

V
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Feasibility in tropical LP

A tropical polyhedral cone is defined as

C = {x ∈ Rn
max | “Ax 6 Bx”}, A,B ∈ Rm×n

max

max
j∈[n]

Aij + xj 6 max
j∈[n]

Bij + xj , ∀i ∈ [m]

A tropical polyhedron is defined as

P = {x ∈ Rn
max | “Ax + c 6 Bx + d”}

where A,B ∈ Rm×n
max , c , d ∈ Rm

max. Questions:

is C reduced to “0”? “0” = (−∞, . . . ,−∞)>

does C contain a finite vector ?

is P non-empty?
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Example: mean payoff (deterministic) games

G = (V ,E ) bipartite graph. rij price of the arc (i , j) ∈ E .
“Max” and “Min” move a token. The player receives the
amount of the arc.
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v k
i value of MAX, initial state (i ,MIN).

v k
1 = min(−2 + 1 + v k−1

1 ,−8 + max(−3 + v k−1
1 ,−12 + v k−1

2 ))

v k
2 = 0 + max(−9 + v k−1

1 , 5 + v k−1
2 )

2

1

8

−3

−12

0

53

2

1

1

2

−9
MIN

MAX
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v k
i value of MAX, initial state (i ,MIN).

v k
1 = min(−2 + 1 + v k−1

1 ,−8 + max(−3 + v k−1
1 ,−12 + v k−1

2 ))

v k
2 = 0 + max(−9 + v k−1

1 , 5 + v k−1
2 )

2

1

8

−3

−12

0

53

2

1

1

2

−9
MIN

MAX

limk v k/k = (−1, 5)
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Max and Min flip a coin to decide who makes the move.
Min always pays.

2

3

−1
2

2 1

−1 −8

21

3
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Solving the game

v k
i := value of the k-horizon game starting from node

i .

value is defined as the mean reward of Max, assuming
both players play optimally

v k = (v k
i ) ∈ Rn

v 0 = 0

v k+1 = T (v k)

where T : Rn → Rn is the Shapley operator
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2

3

−1
2

2 1

−1 −8

21

3

v k+1
i =

1

2
(max
j : i→j

(cij + v k
j ) + min

j : i→j
(cij + v k

j )) .
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Shapley operators

X = C (K ), even X = Rn, K = [n]; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
16j6n

Pab
ij xj
)
, i ∈ [n]

[n] := {1, . . . , n} set of states

a action of Player I, b action of Player II

r abi payment of Player II to Player I

Pab
ij transition probability i → j

Nested max/min/mean can be reduced to the above.
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Shapley operators

X = C (K ), even X = Rn, K = [n]; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
16j6n

Pab
ij xj
)
, i ∈ [n]

T is order preserving, additively homogeneous ⇒
sup-norm nonexpansive:

x 6 y =⇒ T (x) 6 T (y)

T (α + x) = α + T (x), ∀α ∈ R
‖T (x)− T (y)‖ 6 ‖x − y‖
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Shapley operators

X = C (K ), even X = Rn, K = [n]; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
16j6n

Pab
ij xj
)
, i ∈ [n]

Conversely, any order preserving additively homogeneous
operator is a Shapley operator (Kolokoltsov), even with
degenerate transition probabilities (deterministic)
Gunawardena, Sparrow; Singer, Rubinov,

Ti(x) = sup
y∈R

(
Ti(y) + min

16i6n
(xi − yi)

)
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Repeated games

The value of the game in horizon k starting from state i
is (T k(0))i .

We are interested in the long term payment per time unit

χ(T ) := lim
k→∞

T k(0)/k
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i

χ(T ) = lim
k→∞

T k(x)/k , ∀x ∈ Rn

for ‖T k(x)− T k(0)‖ 6 ‖x − 0‖ = ‖x‖
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i

χ(T ) = lim
k→∞

T k(x)/k , ∀x ∈ Rn

for ‖T k(x)− T k(0)‖ 6 ‖x − 0‖ = ‖x‖

Think of xi has a terminal bounty paid by Min to Max if
the game ends in state i .
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2

3

−1
2

2 1

−1 −8

21

3

50
4

 v1 = 1
2(max(2 + v1, 3 + v2,−1 + v3) + min(2 + v1, 3 + v2,−1 + v3)

v2 = 1
2(max(−1 + v1, 2 + v2,−8 + v3) + min(−1 + v1, 2 + v2,−8 + v3)

v3 = 1
2(max(2 + v1, 1 + v2) + min(2 + v1, 1 + v2)

this game is fair
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Optimality certificates

More generally, for u ∈ Rn and λ ∈ R,

T (u) > u =⇒ χ(T ) > 0 superfair

T (u) 6 u =⇒ χ(T ) 6 0 subfair

T (u) = λ + u =⇒ χ(T ) = (λ, . . . , λ) .

Does χ(T ) = limk T k(0)/k exist? Do such
certificates exist?

χi = χj is related to ergodicity. May not hold for
deterministic games, what are the certificates then?
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� χ(T ) = limk T k(0)/k may not exist if the action
spaces are infinite (Kohlberg, Neyman). Counter
example in dimension 3.

However. Let vα denote the discounted value

vα = T (αvα), 0 < α < 1 .

Theorem (Neyman 04 - book edited with Sorin)

If α 7→ (1− α)vα has bounded variation as α→ 1, then

lim
k

T k(0)/k = lim
α→1−

(1− α)vα does exist
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Corollary (Neyman 04, Bewley and Kohlberg 76)

If the graph of T is semi-algebraic, then χ(T ) does exists.

Then, vα is a semi-algebraic function of α, it has a
Puiseux series expansion, and so (1− α)vα has BV.
This is the case in particular if the action spaces are finite.

More generally, T definable in an o-minimal model (Bolte,

SG, Vigeral 13).
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By subadditivity, the following limits (indep of x ∈ Rn) do
exist

lim
k→∞

‖T k(x)− x‖∞
k

= inf
k>1

‖T k(x)− x‖∞
k

χ(T ) := lim
k→∞

t(T k(x)− x)

k
= inf

k>1

t(T k(x)− x)

k

χ(T ) := lim
k→∞

b(T k(x)− x)

k
= sup

k>1

b(T k(x)− x)

k

t(z) := max
16i6n

zi , b(z) := min
16i6n

zi .
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Think of T as a Perron-Frobenius operator in log-glasses:

F = exp ◦T ◦ log, Rn
+ → Rn

+

F extends continuously from intRn
+ to Rn

+ Burbanks,

Nussbaum, Sparrow.

Theorem (non-linear Collatz-Wielandt, Nussbaum, LAA 86)

ρ(F ) = lim
k→∞
‖F k(x)‖1/k , x ∈ IntRn

+

= max{µ ∈ R+ | F (v) = µv , v ∈ Rn
+, v 6= 0}

= max{µ ∈ R+ | F (v) > µv , v ∈ Rn
+, v 6= 0}
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Stochastic games → tropical convex feasibility

Corollary

Let T be a Shapley operator. Then,
limk maxi [T

k(0)]i/k > 0 iff there is u ∈ (R ∪ {−∞})n,
u 6= (−∞, . . . ,−∞)>, T (u) > u.

Proposition

If T is a Shapley operator, C = {u ∈ Rn
max | T (u) > u} is

a closed tropical convex cone.

Proof.

T (sup(u, v)) > sup(T (u),T (v)) > sup(u, v),
T (α + u) = α + T (u), α ∈ R.
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : “Aix 6 Bix”
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
16j6n

aij +xj 6 max
16k6n

bik +xk , aij , bik ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

16k6n
bik + xk .
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aij +xj 6 max
16k6n

bik +xk , aij , bik ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

16k6n
bik + xk .

x 6 T (x) ⇐⇒ max
16j6n

aij + xj 6 max
16k6n

bik + xk , ∀i ∈ I .
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Hi : max
16j6n

aij + xj 6 max
16k6n

bik + xk

[T (x)]j = inf
i∈I
−aij + max

16k6n
bik + xk .

Interpretation of the game

State of MIN: variable xj , j ∈ {1, . . . , n}
State of MAX: half-space Hi , i ∈ I

In state xj , Player MIN chooses a tropical half-space
Hi with xj in the LHS

In state Hi , player MAX chooses a variable xk at the
RHS of Hi

Payment −aij + bik .

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, II CIRM 23 / 40



Correspondence between tropical convexity and

zero-sum games

Theorem (Akian, SG, Guterman, IJAC 2012)

TFAE:

C closed tropical convex cone

C = {u ∈ (R ∪ {−∞})n | u 6 T (u)} for some
Shapley operator T

and MAX has at least one winning state (∃i , χi(T ) > 0)
if and only if C 6= {(−∞, . . . ,−∞)} . Moreover, tropical
polyhedra correspond to deterministic games with finite
action spaces. Then, state i is winning iff ui 6= −∞ for
some u ∈ C .
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x1 x2

x3

x1 x2

x3

states 1,2,3 winning states 2,3 winning
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Polyhedral part relies on Kohlberg’s theorem 1980.

A nonexpansive piecewise affine map T : Rn → Rn

admits an invariant half-line

∃v ∈ Rn, ~η ∈ Rn, T (v + t~η) = v + (t + 1)~η .

The vector u such that T (u) > u is obtained from v , η
(hint: ui = −∞ if ~ηi < 0).
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Strategy of MAX σ : {H1, . . . ,Hm} → {x1, . . . , xn}, in
state Hi choose coordinate xσ(i)

Strategy of MIN π : {1, . . . , n} → {1, . . . ,m}, in
state xj choose hyperplane Hπ(j)

One player Shapley operators

[T σ(x)]j = inf
16i6m

−aij + biσ(i) + xσ(i) .

[Tπ(x)]j = −aπ(j)j + max
16k6n

bπ(j)k + xk .

Duality theorem (coro of Kohlberg)

χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .
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Strategy of MAX σ : {H1, . . . ,Hm} → {x1, . . . , xn}, in
state Hi choose coordinate xσ(i)
Strategy of MIN π : {1, . . . , n} → {1, . . . ,m}, in
state xj choose hyperplane Hπ(j)

One player Shapley operators

[T σ(x)]j = inf
16i6m

−aij + biσ(i) + xσ(i) .

[Tπ(x)]j = −aπ(j)j + max
16k6n

bπ(j)k + xk .

Duality theorem (coro of Kohlberg)

χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .

Every χ(T σ) and χ(Tπ) can be computed in polynomial time.
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χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .

“Ax 6 Bx” unfeasible iff ∃π, χ(Tπ) < 0.

“Ax 6 Bx” feasible iff ∃σ, χ(T σ) > 0.

∃x ∈ Rn
max, Ax 6 Bx? is in NP ∩ co-NP (Edmonds’

good characterization)
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χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .

“Ax 6 Bx” unfeasible iff ∃π, χ(Tπ) < 0.

“Ax 6 Bx” feasible iff ∃σ, χ(T σ) > 0.

∃x ∈ Rn
max, Ax 6 Bx? is in NP ∩ co-NP (Edmonds’

good characterization)

Strategies are Lagrange multipliers!
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x1 6 a + max(x2 − 2, x3 − 1) (H1)

−2 + x2 6 a + max(x1, x3 − 1) (H2)

max(x2 − 2, x3 − a) 6 x1 + 2 (H3)

value χ(T )j = (2a + 1)/2, ∀j .

3

2

1 1

2

33

2

1 1

2

3
−a

0

−2

2

−2

−a

0

−2

2

a

a− 2

a− 1a− 1

−2
a− 1 a− 1
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x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = −3/2, victorious strategy of Min: certificate of
emptyness involving 6 n inequalities (Helly)
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x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = 1, victorious strategy of Max: tropical polytrope 6= ∅
included in the convex set

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, II CIRM 30 / 40



Tropical Farkas (Allamigeon, SG, Katz, LAA11)

Check “Ax 6 Bx =⇒ cx 6 dx”?

A counter example is a vector x 6≡ −∞,

“Ax 6 Bx” “dx 6 αcx”, α < 0

Assume A,B , c , d is prepared (technical condition
about supports, may occur that cx = dx = −∞!)

Suffices to take α = −1 if A,B , c , d have entries in
Z ∪ {−∞}.
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Tropical Farkas (Allamigeon, SG, Katz, LAA11)

Check “Ax 6 Bx =⇒ cx 6 dx”?

A counter example is a vector x 6≡ −∞,

“Ax 6 Bx” “dx 6 αcx”, α < 0

Assume A,B , c , d is prepared (technical condition
about supports, may occur that cx = dx = −∞!)

Suffices to take α = −1 if A,B , c , d have entries in
Z ∪ {−∞}.

Implication holds in Farkas iff χ(T ) < 0, where T is the
Shapley operator associated to the system
“Ax 6 Bx , dx 6 αcx”.
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Compare with classical Farkas

Given a1, . . . , am, c ∈ Qn, is it true that

x ∈ Rn, ai ·x > 0 ∀1 6 i 6 m =⇒ c ·x > 0 ?

Yes iff ∃λ ∈ Qm
+, c = λ1a1 + · · ·+ λmam.

λ can be required to be concise. ANALOGOUS.

λ can be required to be sparse: λi = 0 except for n
values of 1 6 i 6 m. (Carathéodory / Helly by
duality). ANALOGOUS

λ can actually be found in polynomial time (Linear
programming: Khachyan 79, Karmarkar 84,. . . ).
DONT KNOW!
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The Mean Payoff Game problem

Compute χ(T ) where T Shapley operator of
deterministic game with finite action spaces?

Existence of polynomial time algorithm open since Gurvich,

Karzanov, Khachyan 86. One of the few natural pbs in NP ∩
coNP not known to be in P (with factoring!).

Pseudo polynomial algorithm (value iteration)
Zwick-Paterson 96, experimentally efficient policy iteration
algorithms but worst case exponential Friedmann 10.
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The following problems are all equivalent to mean payoff
games

Feasibility: ∃x 6≡ −∞?, “Ax 6 Bx”

Affine feasibility: ∃x?, “Ax + b 6 Cx + d”

Farkas: “Ax 6 Bx =⇒ cx 6 dx”

Separation: given finite sets X ,Y ⊂ Rn
max,

cone X ∩ cone Y = {“0”}?
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Tropical simplex

A tropical LP

min “f · x”; “Ax + c 6 Bx + d”

A,B ∈ Rm×n
max , b, c ∈ Rm

max, f ∈ Rn
max, the inqualities

“x > 0” being included in “Ax + c 6 Bx + d”, can be
lifted to a classical LP over Puiseux series

min f · x; Ax + c 6 Bx + d

A,B ∈ Km×n, b, c ∈ Km, f ∈ Kn,
meaning that val A = A, val B = B , etc. Recall that
val 7t−1/2 − 1 + t1/2 + 7t + · · · = 1/2.
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(0, 0, 0)

(0, 0, 4)

(4, 0, 0)

(4, 4, 0)

(4, 4, 4)
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(t0, t0, t0)

(t0, t0, t−4)

(t−4, t0, t0)

(t−4, t−4, t0)

(t−4, t−4, t−4)

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, II CIRM 37 / 40



Assume that the data are in general position. This can be
defined in terms of tropical Cramer subdeterminants of
“(A + B , c + d)”.
A tropical basic point is obtained by saturating n
inequalities.

Theorem (Allamigeon, Benchimol, SG, Joswig
arXiv:1308.0454)

The valuation of the path of the simplex algorithm over
Puiseux series can be computed tropically (with a
compatible pivoting rule). One iteration takes
O(n(m + n)) time.

Tropical Cramer determinants = opt. assignment used to
compute reduce costs.
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Example of compatible pivoting rule. A rule is
combinatorial if any entering/leaving inequalities are
functions of the history (sequence of bases) and of the
signs of the minors of the matrix

M =
( “A− B” “c − d”

f > “0”

)
.

(eg signs of reduced costs).

Corollary (Allamigeon, Benchimol, SG, Joswig
arXiv:1309.5925)

If any combinatorial rule in classical linear programming
would run in polynomial time, then, mean payoff games
could be solved in strongly polynomial time.
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Concluding remarks

Complexity of tropical LP = deterministic mean
payoff games is open

Stochastic mean payoff games: a fortiori (a pseudo
polynomial algorithm is not known).

Games with fixed discount rate: strongly polynomial,
Ye; Hansen, Miltersen, Zwick.

Current work (Allamigeon, Benchimol, SG, Joswig):
tropicalization of central path.
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Tropical Minkowski-Weyl

Theorem (SG, Katz, Relmics 06, JACO 2011)

A tropical polyhedral convex set can be written as

K = “ conv(X ) + cone(Y )”

with X ,Y finite, and vice versa.

- Inequalities to vertices: finiteness can be proved by
elimination Butkovic and Hegedus, 84; tropical double
description Allamigeon, SG, Goubault DCG 2012.

- Vertices to inequalities: the set of valid inequalities is
itself a polyhedron (tropical polar; SG, Katz).
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Extreme points and rays

Definition
u ∈ V is an extreme generator if u = “v + w” with
v ,w ∈ V implies u = v or u = w . (ie u join irreducible)

Theorem (Tropical Minkowski SG, Katz RELMICS 06, LAA07;

Butkovič, Sergeev, Schneider LAA07)

Every element of a closed tropical cone of Rd
max is a sum

of at most d extreme generators.

Affine version. If K is a closed convex set, then,

K = “ conv(ext(K )) + rec(K )”
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� It is one of the places where −∞ is needed; generators do have −∞
coordinates.

E.g., the tropical line, max(x1, x2, x3) attained twice, is
generated by

(0, 0,−∞), (0,−∞, 0), (−∞, 0, 0)

e1 e2

e3
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Number of extreme rays

A classical question . . .

What is the maximal number of facets of a polytope
of dimension d with p vertices?

or (equivalent by duality)

What is the maximal number of vertices of a polytope
of dimension d with p facets ?
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Theorem (McMullen upper bound 1970)

Among the polytopes of dimension d with p vertices, the
cyclic polytope maximizes the number of faces of each
dimension.

The cyclic polytope C (p, d) is the convex hull of p points
of the moment curve t 7→ z(t) := (t, t2, . . . , td).
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Definition

A 0/1 sequence satisfies Gale’s evenness condition if the
number of 1 between any two 0 is even.

Eg., 0110111100011001111110000111
Let C (p, d) := co(z(t1), . . . , z(tp)) with
t1 < t2 < · · · < tp.

Fact

The points z(ti1), . . . , z(tid+1
) define a facet iff the

associated word satisfies Gale’s evenness condition.

Eg., i1 = 2, i2 = 3, i3 = 5, p = 5, d = 2 → 01101

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 8 / 61



Corollary (classical)

The number of facets of a polytope of dimension d with
p vertices is at most

U(p, d) :=

(
p − d/2

d/2

)
+

(
p − d/2− 1

d/2− 1

)
for d even

U(p, d) := 2

(
p − (d + 1)/2

(d − 1)/2

)
for d odd.

This is Θ(pd/2) has p →∞, keeping d fixed, so much
smaller than the naive bound

(
p
d

)
= Θ(pd).
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The same questions can be raised for max-plus or tropical
convex sets/ cones

Theorem (Allamigeon, SG, Katz, JCTA 11)

The number of extreme rays of a tropical cone V defined
by p inequalities in dimension d cannot exceed
U(p + d , d − 1).

V := {x ∈ Rd
max | max

j∈[d ]
aij + xj 6 max

j∈[d ]
bij + xj , i ∈ [p]} .

The bound is Θ(pb(d−1)/2c) for d fixed and p →∞.
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Proof (by dequantization)

For β > 0, consider the classical convex cone V(β)
defined by the p + d inequalities

yj > 0 , j ∈ [d ] ,

1

d

∑
j∈[d ]

exp(βaij)yj 6
∑
j∈[d ]

exp(βbij)yj , i ∈ [p] .

By the McMullen upper bound theorem, V(β) has a
generating family (uk(β))k∈[K ] with K 6 U(p + d , d − 1).
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If x ∈ V , then Eβ(x) := (exp(βxj)) ∈ V(β). WLOG,
normalize uk(β) (entries sum to one). Let
vk(β) := E−1β (uk).

max
j∈[d ]

vk(β)j 6 0 6 β−1 log d + max
j∈[d ]

vk(β)j ,

−β−1 log d + max
j∈[d ]

aij + vk(β)j 6 β−1 log d + max
j∈[d ]

bij + vk(β)j .

Then, it can be checked that any accumulation point of
the family (vk(β))k∈[K ] yields a generating family of V
(use V(β) ⊃ V thanks to the 1/d trick).
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Is the tropical upper bound attained?

The usual bound of ] vertices for a dim d polytope with p facets is
attained by the polar of the cyclic polytope

C (p, d)◦ := {y | z(ti) · (y − w) 6 1, i ∈ [p]}, w ∈ int(C (p, d)) .

In the tropical case

z(t) := “(1, t, . . . , td−1)” = (1, t, . . . , (d − 1)t) ∈ Rd
max ,

Homogeneizing naively C (p, d)◦ yields

{y | “z(ti) · y 6 0”, i ∈ [p]}

which is trivial. To make it less trivial, we may add signs.
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Introduce a sign pattern εij ∈ {±1}
Set formally “z(ti)j = εijt

j−1
i ”in the symmetrized maxplus

semiring Smax, so z(ti) = “z+(ti)− z−(ti)” where

z±(ti) ∈ Rd
max, z±(ti)j =

{
“t j−1

I ” if εij = ±1

“0” otherwise

Definition

The signed cyclic polyhedral cone C (p, d ; ε), is generated by p pairs
of vectors (z−(ti), z

+(ti)) ∈ (Rd
max)2, i ∈ [p]. Its polar K(p, d ; ε) is

the set of vectors x ∈ Rd
max such that

“z−(ti) · x 6 z−(ti) · x”, i ∈ [p], i.e.

max
j∈[d ],εij=−1

(j − 1)ti + xj 6 max
j∈[d ],εij=+1

(j − 1)ti + xj , i ∈ [p] .
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The analogy with the classical case . . .

may suggest that there should be some choice of

sign ε such that the polar K(p, d ; ε) of the signed

cyclic polyhedral cone has exactly

U(p + d , d − 1) extreme rays. . .

we shall see that this is not true.

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 15 / 61



The analogy with the classical case . . .

may suggest that there should be some choice of

sign ε such that the polar K(p, d ; ε) of the signed

cyclic polyhedral cone has exactly

U(p + d , d − 1) extreme rays. . .

we shall see that this is not true.

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 15 / 61



The analogy with the classical case . . .

may suggest that there should be some choice of

sign ε such that the polar K(p, d ; ε) of the signed

cyclic polyhedral cone has exactly

U(p + d , d − 1) extreme rays. . .

we shall see that this is not true.

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 15 / 61



Some lattice paths

southward / eastward paths in the sign pattern εij



j1 j2 j3 j4 j5 j6

· + · · · · · · · · · · · · ·
· + · · · · · · · · · · · · ·

i1 · + ? ? − · · · · · · · · · ·
· · · · + · · · · · · · · · ·
· · · · + · · · · · · · · · ·

i2 · · · · + − · · · · · · · · ·
· · · · · + · · · · · · · · ·

i3 · · · · · − ? ? ? + · · · · ·
· · · · · · · · · + · · · · ·
· · · · · · · · · + · · · · ·
· · · · · · · · · + · · · · ·

i4 · · · · · · · · · − ? + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·
· · · · · · · · · · · + · · ·

i5 · · · · · · · · · · · − + · ·
· · · · · · · · · · · · + · ·
· · · · · · · · · · · · + · ·
· · · · · · · · · · · · + · ·
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A lattice path for the sign pattern εij is tropically allowed if

(i) every sign occurring on the initial vertical segment, except
possibly the sign at the bottom of the segment, is positive;

(ii) every sign occurring on the final vertical segment, except
possibly the sign at the top of the segment, is positive;

(iii) every sign occurring in some other vertical segment, except
possibly the signs at the top and bottom of this segment, is
positive;

(iv) for every horizontal segment, the pair of signs consisting of the
signs of the leftmost and rightmost positions of the segment is
of the form (+,−) or (−,+);

(v) as soon as a pair (−,+) occurs as the extreme signs of an
horizontal segment, the pairs of the next horizontals segments
must also be equal to (−,+).

If only (i)–(iv) hold, we say that the path is classically allowed.
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Theorem (Allamigeon, SG, Katz, JCTA 11)

The extreme rays of the polar of the tropical signed
cyclic polyhedral cone correspond bijectively to the
tropically allowed lattice paths.

For t1 � t2 � · · · � tp, the extreme rays of the
classical analogue of this polar correspond bijectively
to the classically allowed lattice paths.

� When deforming a polytope into a tropical polytope,
some extreme points vanish.
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This apparently mysterious result relies on a
characterization of the extreme points of a tropical
polyhedron in terms of the inequalities which define it:
Allamigeon, SG, Goubault, DCG 2012

Recall first.

Fact (See Butkovič, Sergeev, Schneider; SG, Katz, both LAA 07)

A vector g of a tropical cone C ∈ Rd
max is extreme iff

∃t ∈ [d ] such that g is a minimal element of the set
{ x ∈ C | xt = gt }. In that case, g is said to be extreme
of type t.
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Definition

The tangent cone of C := {x | “Ax 6 Bx”} at g is
defined as the tropical cone T (g , C) of Rd

max given by the
system of inequalities

max
i∈argmax(Akg)

xi 6 max
j∈argmax(Bkg)

xj

for all k ∈ [p] such that Akg = Bkg .
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Fact (Allamigeon, SG, Goubault)

There exists a neighborhood N of g such that for all
x ∈ N, x belongs to C if and only if it is an element of
g + T (g , C).

Fact (ibid.)

The element g is extreme in C if and only if the vector 1
is extreme in T (g , C).

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 21 / 61



x y

z

g 2

x y

z

g 2

x y

z

1
(0, 1, 0)

(0, 0, 1)
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Theorem (Allamigeon,SG, Goubault, ibid.)

A vector y ∈ Rd
max belongs to an extreme ray of a tropical

polyhedral cone C if, and only if, there exists
s ∈ {1, . . . , d} such that

(x ∈ T (C, y) ∩ {1, 0}d and xs = 1)⇒ (xr = 1 or yr = 0)

for all r ∈ {1, . . . , d}.

Corollary

If t entries of y are zero, then y must saturate at least
d − t − 1 inequalities among Arx 6 Brx, r ∈ [p].
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Recall our characterization: a vector y ∈ Rd
max belongs to

an extreme ray of a tropical polyhedral cone C if, and only
if, there exists s ∈ {1, . . . , d} such that

(x ∈ T (C, y) ∩ {1, 0}d and xs = 1)⇒ (xr = 1 or yr = 0)

for all r ∈ {1, . . . , d}.

Eg, when y is finite, does there exists s such that, for
x ∈ {0, 1}d ,

xs = 1 and max
i∈argmax(Aky)

xi 6 max
j∈argmax(Bky)

xj =⇒ x ≡ 1?
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This is expressed as an hypergraph reachability problem.
Given a node set N , an (oriented) hyperedge is a pair
(T ,H) (tail, head) with T ,H ⊂ N . We say that v is
reachable from u if u = v , or there exists e ∈ E such
that v ∈ H(e) and all the elements of T (e) are reachable
from u. Here, T = arg max(Aky) and H = arg max(Bky).

1

2

3

4

5

6

a1
a2

a3

a4

a5
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Proposition (ibid.)

TFAE

(a) i is reachable from j in the hypergraph arising from
the tangent cone at point v ;

(b) for all x ∈ T (v , C) ∩ {0, 1}d , xi 6 xj ,

Theorem (ibid.)

A vector y belongs to an extreme ray iff the hypergraph
arising from its tangent cone has only one terminal
strongly connected component.
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x y

z

g2

g2 = (2, 2, 0), T (g2, C)

x3 6 x1 + 2

x1 6 max(x2, x3)

x1 6 x3 + 2

x3 6 max(x1, x2 − 1)
(1)

x1 6 x2

x1 6 x3

Figure ?? illustrates that the cones C and g2 + T (g2, C) locally coincide in

a neighborhood of g2. The tangent directed hypergraph H(g2, C)
associated to the vector g2 is formed by the two hyperarcs ({2}, {1}) and
({3}, {1}). The node 1 consequently forms the greatest strongly

component of the hypergraph.
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The first theorem (that the extreme rays of the
tropical signed cyclic polyhedral cone correspond
bijectively to the tropically allowed lattice paths) is
obtained as a corollary

the proof uses also the tropical Cramer theorem in
the signed tropical semiring (M. Plus (1990), Akian, SG,

Guterman 09).

the tangent cones turn out to be described by “line”
directed graphs, which must have a unique terminal
node. This explains the mysterious condition (v)
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x y

z

[
+ · ·
+ · ·

] ( 0
−∞
−∞

)

(−∞
−∞

0

) [
· · +
· · +

]

(
1
0
−∞

) [
+ · ·
+ − ·

]
(

1
1
0

) [
+ − ·
· − +

]
(
−∞

0
0

) [
· − +
· · +

]

x y

z

(
0 −∞ 0
0 −∞ 2

)x1

x2

x3

 >

(
−∞ 0 −∞
−∞ 1 −∞

)x1

x2

x3

 .
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� Usually, a point y in {x | Ax 6 b} is extreme iff the
family of rows Ak arising from active constraint is of
full rank. The same is not true in the tropical case.
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N tpath(ε) (resp. Npath(ε)) := ] tropically (resp. non-tropically)
allowed lattice paths for the sign pattern ε.

N trop(p, d) := maximal ] extreme rays of a tropical cone in
dimension d defined as the intersection of p half-spaces.

max
ε∈{±1}p×d

N tpath(ε) 6 N trop(p, d) 6 U(p+d , d−1) = max
ε∈{±1}p×d

Npath(ε) .

We initially thought that the maximum of the ] of extreme points is
attained among the polars of signed cyclic polyhedra:

max
ε∈{±1}p×d

N tpath(ε) = N trop(p, d)?

Not true! Finding the maximizing model for N trop is an open problem.

Stephane Gaubert (INRIA and CMAP) Tropical convexity and zero-sum games, III CIRM 31 / 61



However. . .

Fact

For d > 2p + 1, we have

N tpath(p, d) > U(d , d − p − 1) . (2)

It follows that the tropical upper bound is asymptotically
tight for a fixed number of constraints p, as the
dimension tends to infinity

N trop(p, d) ∼ U(p + d , d − 1) as d →∞ .
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Lower and upper bounds for N trop(p, d), the maximal number of
extreme rays of a tropical polyhedral cone defined by p inequalities in
dimension d .

d \ p 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10 11 12
4 6 8 10 12 14 16 18 20 22

5 9 14 20 [26, 27] [32, 35] [38, 44] [44, 54] [50, 65] [56, 77]
6 12 20 30 42 [55, 56] [68, 72] [82, 90] [96, 110] [110, 132]
7 16 30 50 [71, 77] [96, 112] [124, 156] [152, 210] [180, 275] [208, 352]
8 20 40 70 112 [159, 168] [216, 240] [280, 330] [340, 440] [401, 572]
9 25 55 105 [172, 182] [250, 294] [321, 450] [436, 660] [613, 935] [751, 1287]

10 30 70 140 252 [370, 420] [538, 660] [668, 990] [898, 1430] [1320, 2002]
11 36 91 196 [363, 378] [584, 672] [805, 1122] [1122, 1782] [1357, 2717] [1799, 4004]

We do not know whether N trop(4, 5) = 26 or 27 (!)
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When computing, use vertices, not pseudo vertices!

The \ pattern yields (p − 2d + 7)(2d−2 − 2) extreme rays.



+ + − − − − +
+ + + − − − +
+ + + + − − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − + + + − +
+ − − + + + +
+ − − − + + +
+ − − − − + +
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For d = 4 and p = 10, 24 vertices, 1215 pseudo-vertices
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The previous lattice path theorem has the following
suprising corollary.

Corollary (Allamigeon, SG, Goubault, Katz LAA 11)

The tropical (unsigned) cylic polyhedral cone C (p, d),
i.e., the row space of the matrix (t j−1i )16i6p,16j6d , can be
defined by a family of O(pd3) inequalities.,

Compare with the classical analogue O(pb(d−1)/2c).
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Dual problem: minimal defining systems of inequalities for
a polyhedron.

There is a minimal representation (unique modulo certain
exchanges), Alllamigeon, Katz JCTA 13
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An application of tropical convexity in infinite dimension

tropical approximation in optimal control, attenuation of
the curse of dimensionality
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Lagrange problem / Lax-Oleinik semigroup

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (St)t>0, Stφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

St(sup(φ, ψ)) = sup(Stφ, Stψ)
St(λ + φ) = λ + Stφ

So St is max-plus linear.
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v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (St)t>0, Stφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

St(“φ + ψ”) = “Stφ + Stψ”
St(“λφ”) = “λStφ”

So St is max-plus linear.
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The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = sup
y∈Rn

tL(
x − y

t
) + φ(y) .
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The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = “

∫
G (x − y)φ(y)dy” .
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Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a “linear comb.” of
“basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) '“
∑
i∈[p]

λi(t)wi”

The wi are given finite elements, to be chosen depending
on the regularity of v(t, ·)
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Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a “linear comb.” of
“basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) ' sup
i∈[p]

λi(t) + wi

The wi are given finite elements, to be chosen depending
on the regularity of v(t, ·)
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Best max-plus approximation

P(f ) := max{g 6 f | g “linear comb.” of wi}
linear forms wi : x 7→ 〈yi , x〉

〈yi , x〉

adapted if v is convex
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Best max-plus approximation

P(f ) := max{g 6 f | g “linear comb.” of wi}

cone like functions wi : x 7→ −C‖x − xi‖

xi

adapted if v is C -Lip
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Max-plus basis propagation

Max-plus linearity is essential in max-plus basis method:

Vt ' Ṽt = sup
i
λti + wi

Vt+τ ' Sτ [Ṽt ] dynamic programming principle
= sup

i
Sτ [λti + wi ]

= sup
i
λti + Sτ [wi ] maxplus linearity

' sup
i
λti + S̃τ [wi ] semigroup approximation step

' sup
i
λt+τ
i + wi maxplus projection step

In summary:

VT (x) = {Sτ}N [V0] '
{P ◦ S̃τ}N [V0] .
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Vt ' Ṽt = sup
i
λti + wi
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Max-plus basis methods

Several max-plus basis methods have been proposed:

[Fleming,McEneaney 00]:
A first development of max-plus basis method

[Akian,Gaubert,Lakhoua 06]:
A finite element max-plus basis method

[McEneaney 07]:
A curse of dimensionality free method

[McEneaney,Deshpande,Gaubert 08],
[Sridharan,James,McEneaney 10], [Dower,McEneaney 11], ......
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Problem

Switched optimal control problem

Infinite horizon switched optimal control problem
[McEneaney 07]:

V (x) = sup
µ

sup
u

∫ ∞
0

1

2
x(t)′Dµ(t)x(t)− γ2

2
|u(t)|2dt,

where

D∞
.

= {µ : [0,∞)→ {1, . . . ,M} : measurable} ,
W

.
= Lloc

2 ([0,∞);Rk) ,

and x(·) satisfies:

ẋ(t) = Aµ(t)x(t) + σµ(t)u(t), x(0) = x ∈ Rd ,

arising from H∞ robust control, nonconvex (D1, . . . ,DM < 0).
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Problem

McEneaney’s curse of dimensionality free method

Semigroup approximation:

Sτ ' S̃τ = sup
m

Sm
τ

Sm
t is the semigroup associated to the control problem by letting

the switching control µ equal to m ∈ {1, . . . ,M}:

Sm
t [φ](x) = sup

u

∫ t

0

1

2
x(t)′Dmx(t)− γ2

2
|u(t)|2dt + φ(x(t)).

ẋ(s) = Amx(s) + σmu(s); x(0) = x ∈ Rd .

Sm
t [φ] is a quadratic function if φ is. (Riccati)

V ' VT = {Sτ}N [V0] ' {S̃τ}N [V0] =
sup

iN ,...,i1

S iN
τ ◦ . . . S i1

τ [V0] .
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Problem

Arborescent propagation

V ' VT = {Sτ}N [V0] ' {S̃τ}N [V0] =
sup

iN ,...,i1

S iN
τ ◦ . . . S i1

τ [V0] .

V0

S1
τ [V0] SM

τ [V0]. . . . . .

S1
τ S

1
τ [V0] SM

τ S1
τ [V0] S1

τ S
M
τ [V0] SM

τ SM
τ [V0]. . . . . .

S1
τ . . . S

1
τ [V0] SM

τ . . . SM
τ [V0]. . . . . .
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Problem

Arborescent propagation

V ' VT = {Sτ}N [V0] ' {S̃τ}N [V0] =
sup

iN ,...,i1

S iN
τ ◦ . . . S i1

τ [V0] .

V0

S1
τ [V0] SM

τ [V0]. . . . . .

S1
τ S

1
τ [V0] SM

τ S1
τ [V0] S1

τ S
M
τ [V0] SM

τ SM
τ [V0]. . . . . .

S1
τ . . . S

1
τ [V0] SM

τ . . . SM
τ [V0]. . . . . .

Computational complexity: O(MNd3) ⇒curse of dimensionality
free
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Problem

Tree approximation + pruning

Computational complexity: O(MNd3)

The method has been applied to solve approximately problems of

dimension d = 4, number of switches M = 3, in [McEneaney 07]

dimension d = 6, number of switches M = 6,
in [McEneaney,Deshpande,Gaubert 08] (with a semidefinite
programming pruning technique)

dimension d = 15, number of switches M = 6,
in [Sridharan,James,McEneaney 10] (quantum optimal gate
synthesis, SU(4))
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Introduction

Switched infinite horizon optimal control problem

Static HJ equation:

H(x ,∇V ) = 0, ∀x ∈ Rd ; V (0) = 0 .

where H(x , p) = sup
m∈{1,...,M}

1
2
x ′Dmx + 1

2
p′Σmp + (Amx)′p.

Assumption
(existence)

0 ≺ Dm 4 cD Id , 0 ≺ Σm 4 cΣId , ∀m
x ′Amx 6 −cA|x |2, ∀x ∈ Rd , ∀m. c2

A > cDcΣ.

Assumption Σ: Σm = Σ, m = 1, . . . ,M .

Assumption
contraction: Dm > mD Id , mDcΣ > (cA −

√
c2
A − cDcΣ)2.
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Introduction

Error bound

Theorem (Zheng Qu, PhD 2013)

Under Assumption existence and Assumption contraction,
the computational complexity to reach an error of order ε
is

O(M− log(ε)/εd3) .

Compare with O(1/εd/r) for a grid scheme with an error
of order (∆x)r .
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Introduction

Invariant metrics on the cone of positive matrices

Thompson’s part metric:

dT (A,B) = ‖ spec(log B−
1
2 AB−

1
2 )‖∞, A,B � 0

Thompson’s part metric is an invariant Finsler metric:

dT (UAU ′,UBU ′) = dT (A,B) ,U ∈ GL(n)

dT (A,B) = inf
γ

∫ 1

0

‖γ̇(t)γ(t)−1‖∞ dt.

Riemannian metric:

d2(A,B) = inf
γ

∫ 1

0

‖γ̇(t)γ(t)−1‖2dt

Standard Riccati operator (flow) is a strict contraction mapping
in Riemannian metric ([Bougerol 93]), in Thompson’s part
metric ([Liverani and Wojtkowski.94, Lawson and Lim 07]) and
in all invariant Finsler metric ([Lee and Lim 07]). (symplectic
approach)
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Introduction

Main ingredient: contraction property of Riccati

flow

For all m ∈ {1, . . . ,M}, the semigroup {Sm
t }t corresponds to the

flow of an indefinite Riccati equation:

Ṗ = (Am)′P + PAm + Dm + PΣmP . (3)

Theorem (Indefinite Riccati flow is a strict local contraction)

Under Assumption existence and Assumption contraction, there is
P0 � 0 and α > 0 such that for all solutions
P1(·),P2(·) : [0,T ]→ (0,P0) of the indefinite Riccati flow (3) we
have:

dT (P1(t),P2(t)) 6 e−αtdT (P1(0),P2(0)), ∀t ∈ [0,T ] .
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Introduction

Curse of dimensionality is unavoidable

Qu’s error bound O(M− log(ε)/εd3) shows that for fixed ε,
execution time is polynomial in d .
However, we recover a curse of dimensionality, when
ε→ 0.

Theorem (coro of Grüber, polyhedral approximation of
convex bodies)

The minimal number of affine minorant functions to
approximate a C 2 convex function f : Rd → R is
equivalent to:

C

εd/2
, as ε→ 0 ,

where C = α1

( ∫
X (det(f ′′(x)))

1
d+2 dx

) d+2
d

.
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Introduction

Current bottleneck: pruning representation. Given

f = sup
i∈[p]

φi , φi quadratic Rd → R

and k � p, find I ⊂ [p], |I | = k , with a best
approximation of f by

sup
i∈I

φi .

Heuristics, SDP relaxations, reduction to a discrete
facility location problem (curse of dim dependent).
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Introduction

Coming back to the first exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0
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Coming back to the first exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0

L1
ε ∼ ε−1/3, L2

ε ∼ jε−1/3, L3
ε ∼ j2ε−1/3.
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Introduction

Coming back to the first exercise

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Eigenvalues ? ε→ 0

L1
ε ∼ ε−1/3, L2

ε ∼ jε−1/3, L3
ε ∼ j2ε−1/3.

Answer without computation using tropical algebra.
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Introduction

Give A ∈ Rn×n
max , λ is a geometric eigenvalue if

Au = λu, u ∈ Rn
max \ {“0”}

λ is an algebraic eigenvalue if

“ det(A− λI ) = 0”

meaning that λ is a nondifferentiability point of value of
parametric optimal assignment problem

t 7→ max
σ

∑
i

Mi ,σ(t),

M(t)= “A+ t I”, Mij = Aij , Mii = max(Aii , t) .
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Introduction

Theorem (Max-plus spectral theorem, Cuninghame-Green, 61,

Gondran & Minoux 77, Cohen et al. 83)

Assume G (A) is strongly connected. Then

the eigenvalue is unique:

ρmax(A) := max
i1,...,ik

Ai1i2 + · · ·+ Aik i1

k

Assume WLOG ρmax(A) = 0, then, ∃αj ∈ R ∪ {−∞},

u = max
j∈maximizing circuits

αj + A∗·,j

A∗ij := max weight path arbitrary length i → j .

Arc i → j in G (A) if Aij 6= −∞.
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Introduction

The first exercise solved

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 , A =

 −1 0 −4
−∞ −1 2
−1 −2 −∞

 .

We have λ = 1/3, corresponding to the critical circuit:

2 31

20

−1

Eigenvalues:

L1
ε ∼ ε−1/3,L2

ε ∼ jε−1/3,L3
ε ∼ j2ε−1/3.

Akian, Bapat, SG, CRAS 04, generalizes Lidski’s theorem
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Introduction

One can show eigenspaces are isomorphic to spaces of
Lipschitz functions (wrt to non symmetric metrics).

Relation with horoboundaries of metric spaces. The
tropically extreme Lipschitz functions are Busemann
points (limits of geodesics).
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Introduction

Concluding remarks

All the convexity you like works: Helly, Carathéodory,
Radon, Tverberg, Double Description, Hahn-Banach,
Krein-Milman, Choquet, . . .
Some combinatorial aspects (counting extreme points
and faces) are not understood.
Complexity of trop LP = complexity of mean payoff
games (is it polynomial?)
useful: metric estimates of amoebas, bounds for
matrix eigenvalues, scaling in matrix analysis
emerging max-plus curse of dimensionality
attenuation for HJ equation, open question: extension
to stochastic control.
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Introduction

Tropical problems are simpler (combinatorial)

. . . but not too simple.

Much remains to do . . .

Thank you !
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