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Context

• Increasing quantity of points

• Increasing measurement
accuracy

• Increasing ways of acquiring
surfaces (laser,
photogrammetry...)

• Low cost acquistion devices
(kinect...)
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Why store points?

• A mesh is one way to represent a surface

• The points correspond to the raw information without any
interpretation

• Some applications do not need connectivity

• Di�culty with unorganized points: no sampling theorem, no
structure!

How do we store pointsets without destroying their input accuracy?

Introduction 3/39



Introduction Previous Work Compression Decompression Results Conclusion and Perspectives

Idea: modify the point cloud below the surface accuracy

• The surface comes with an input accuracy, the acquisition devices is
accurate to a given precision.

• Idea: Resample the surface with local patterns

• Compress these local patterns

Two errors: resampling error and compression error. We can control
them!
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Compression for meshes

• Mesh compression dates back to Deering 1995

• Single resolution meshes compressed by valence coding (Touma,
Gotsman, 1998)

• Progressive compression (Alliez and Desbrun 2001)

• Compression via Wavelets of a shape remeshed with subdivision
connectivity [Guskov et al. 2000], [Peyré and Mallat 2005].
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Point Cloud Compression

• Coordinate quanti�cation via octree coding (Gandoin and Devillers
2002, Schnabel and Klein 2006, Smith et al. 2012)

Images from Gandoin and Devillers 2002
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Point Cloud Compression for Rendering

Primitive based compression Schnabel, Möser, Klein, 2007-2008

• Shape segmentation based on
primitive regression
(RANSAC)

• Height �elds over the
primitives are computed

• These height-�elds are
decomposed via vector
quantization Image from Schnabel et al. 2008, 3.31 bits per point
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Attempt at using self-similarity for compression

Hubo et al. 2008

• Select a subset of points

• De�ne patches, group them by similarity

• Replace each patch by its codebook
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Self-similarity for surfaces

• Similarity for the analysis of the structures in a surface

• Symmetry or repeated structures in the surface (Mitra et al 2006,
Pauly et al. 2012)

• Denoising for meshes (Yoshizawa 2006) and point clouds (Digne
2012)

Similarity based denoising of point clouds
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Patch-based approaches for signal and image processing

• Texture synthesis (Efros 99), Non local means (Buadès et al. 2005).

• Compressive sensing theory (Candès et al. 2006): there exists
spaces, in which the signals would be sparsely represented, that are
especially well suited for processing the signals.

• Sparse regularization for image analysis, inpainting... [Elad et al.
2006] [Mairal 2009] The K-SVD algorithm

• Can we adopt a similar approach for surfaces?
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Compression Summary

• Pick a subset of points (the seeds)

• Compute a local parameterization of the seeds

• Describe the surface in these local neighborhoods as a local patch

• Compute a dictionary and a sparse decomposition of these local
patches on this dictionary

• Encode the seeds, their local parameterizations, the dictionary and
the coe�cients.
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Working assumptions

• Topological condition: R must be set such that P can be covered by
the set of R-neighborhoods corresponding to a subset of seed points
in P. Additionally, each R-neighborhood should delimit a
topological disk on the underlying surfaceM.

• Sampling condition: The R-neighborhood of a seed point must
contain enough points so that a meaningful patch of surface can be
computed.

• Noise level: The noise magnitude is strictly below radius R.

NB: The points may (or may not) be equipped with a normal.
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Seed selection

• We select a subset of the
points, the seeds that will
serve as anchors to de�ne
local patches

• The subset of the seeds S
satis�es:

∀p ∈ P,∃s ∈ S, ‖p − s‖ ≤ R.

• What is a good covering of
the points?

• Outliers: a patch will be
created for each outlier ⇒
minimum coverage threshold
to avoid it.

• Seeds selected in a
dart-throwing fashion.
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Choice of a local coordinate system

• p a point of the surface, let (pi ) its neighbors

• p̄ = 1
N

∑N

i=1 pi ; CI = 1
N

∑N

i=1(pi − p̄)T · (pi − p̄).

• Unoriented case: ni is the eigenvector corresponding to the least
eigenvalue of the local covariance matrix

• ~nm = 1
N

∑N

i=1 ~ni ; CII = 1
N

∑N

i=1(~ni − ~nm)T · (~ni − ~nm).

• Eigenvectors of CII give the local parameterization in the tangent
plane

• If the normal is oriented, one picks the local frame orientation
accordingly.
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Neighborhood description

• Each point p is equipped with
a normal ~n and a tangent
vector ~t1

• a radial grid
(ri , θj)i,j=0···Nbins−1 such that:

ri = (
1

2
+i)· R

Nbins

; θj = j · 2π

Nbins

• Interpolate linearly the local
height �eld on this grid.

~n

~t1

This simple neighborhood description already implies an error: we must
ensure that this error is below the input scanner accuracy.
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Self-similarity compression

• All local patches are represented in a comparable way

• A dictionary is built upon which all patches will be represented

• The compression will consist in a set of parameterized seeds, a small
dictionary and the (sparse) coe�cients of the patch decomposition

• The dictionary is found by the K-SVD algorithm
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A short summary of K-SVD

• The K-SVD algorithm is a method for building representations of
�nite discretized signals as sparse linear combinations over an ad hoc
dictionary (Mairal, Sapiro, Elad...)

• Y is a k × n matrix, whose columns are n training signals (yi )i=1,···n

• Goal: Find a dictionary D, composed of d signal atoms, over which
each signal yi can be represented as a linear combination of the
dictionary atoms di .

• Both X and D are solved for by computing:

min
D,X
‖Y − DX‖ s.t. ∀i , ‖xi‖0 ≤ T0

• An iterative approach that alternates between two steps

• Sparse coding of the examples based on the current dictionary
• Update of the dictionary so as to better �t the data
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Sparse Coding stage

• D is �xed, compute the best representation xi of sample yi

• Find xi minimizing ‖yi −Dxi‖22 s.t. ‖xi‖0 ≤ T0

• Can be done using a pursuit algorithm (e.g. Orthogonal Matching
Pursuit)
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Dictionary Update stage

• The update will be done atom by atom.

• ‖Y−DX‖2F = ‖Y−
∑N

j=1 djx
j
T‖2F = ‖Y−

∑N

j=1,j 6=k djx
j
T − dkx

k
T‖2F

• Ek = Y −
∑N

j=1,j 6=k djx
j
T error obtained by omitting atom dk in the

decomposition

• Finally solve for :

‖Ek − dkx
k
T‖F w.r.t. dk , x

k
T

• Solve using SVD? if so sparsity not enforced -> build an auxiliary
matrix to enforce sparsity

Dictionaries built for two di�erent shapes: a geometrical one (the mire, left) and a �ne art one (the Lovers, right).

The atoms are shown by order of importance (total absolute weight in the linear decompositions).
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Further compression

• The coe�cients are compressed via a scalar quantization followed by
entropy coding.

• The seeds are compressed via an octree-based compression (Gandoin
and Devillers, 2002).

• The local parameterization is represented as three Euler angles: we
encode the di�erence of the true parametrization with the
parameterization estimated on the seeds.

• The dictionary is losslessly compressed.
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Compression summary

This Compression scheme yields 4 kinds of data :

• the seeds (three coordinates)

• three Euler angles di�erence giving the local parameterization

• the dictionary (a Natoms × N2
bins matrix)

• the decomposition coe�cients

As an example, For the Lovers of Bordeaux, bitstream sizes are 312KB
for the seeds coordinates and 297KB for the angle di�erences, both
quantized on 8 bits. The dictionary and coe�cients are respectively
encoded on 18KB and 507KB.
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First step: decompressing the seeds and the patches

1. Decompress the seed positions

2. Decompress the Euler angles and the dictionary

3. Decompress the coe�cients X

4. Reconstruct the patches: Prec = D ∗ X
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Second step: recover the surface from the patches

• Each bin (r , θ) of the sampling pattern Fs(r , θ) yields potentially a
point:

(r cos(θ), r sin(θ),Fs(r , θ))

• Translation in the global coordinate system as:
s + r cos(θ)t1(s) + r sin(θ)t2(s) +Fs(r , θ)n(s). Problem: each point
can be covered several times!

• Consolidate the reconstructed point cloud in the overlapping areas.
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Figure : Compression and decompression of the Anubis point set (Left:original,
right: decompression)
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Figure : Rendering of the original (left) and decompressed Stanford St
Matthew (right), both have 93.4 million points
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Figure : Original mire pointset (top) and decompression (bottom). Both
pointsets were reconstructed using the Screened Poisson Reconstruction
[Kazdhan, 2013]
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Figure : Comparison with octree coding. Left : original point cloud. Right :
comparative decompression. Even with more bits per point (4.83 against 0.6 in
our method), the right part encoded with Gandoin et al. is less accurate than
our approach (left part).Results 32/39
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Breaking the working assumptions

Figure : The Bremen point cloud (bottom) and the decompressed result (top)
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number
of

compressed
size

RMSE Percentage of
points

Pointset points R (bytes) (% of diagonal) with error above bpp
sampling precision

Anubis 9, 9M 0.7mm 1, 201, 636 0.01mm
(0.003%)

1.23% 0.96

Lovers of
Bordeaux

15, 8M 0.5mm 1, 152, 245 0.01mm
(0.006%)

0.86% 0.59

Mire 16, 1M 0.6mm 1, 480, 118 0.03mm
(0.011%)

1.30% 0.73

Tanagra 16, 4M 0.7mm 1, 238, 271 0.01mm
(0.004%)

1.56% 0.60

David 28, 2M 10mm 2, 150, 711 0.24mm
(0.004%)

0.75% 0.61

Bremen 69, 9M 18cm 6, 699, 915 1.48cm
(0.005%)

not available 0.76

St
Matthew

93, 5M 3mm 9, 780, 886 0.05cm
(0.002%)

not available 0.83

Figure : Compression performance
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Figure : Comparison with previous works in terms of rate/distortion on the
David model. The di�erent bitrates were obtained by increasing the radii of the
patches and the size of the descriptors.
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Limitations

• It is not a lossless compression scheme (not designed as one)

• Huge computation times still (no parallelization)

• The largest part of the error is caused by the resampling pattern

• Outliers, noise, holes
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Conclusion and Perspectives

• A compression pipeline that targets the precision and preservation of
details

• Still a lot of possible improvements:

• Find a better (cleverer?) way to cover the surface.
• The resampling pattern could be improved.
• Better handling of sharp edges.

Thanks to Pierre-Marie Gandoin for providing his octree-based
compression code.
More details in Self-similarity for accurate compression of point sampled

surfaces, J. Digne, R. Chaine, S. Valette, to appear in Computer Graphics
Forum, Proceedings Eurographics 2014.
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