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Mickaël Buchet - Scalar field analysis with aberrant noise December 16, 2013 - 3



What is scalar field analysis?

Persistence diagram
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What is scalar field analysis?

Comparison between persistence diagrams

Bottleneck distance:

dB(D,E ) = inf
b∈B

max
x∈D
||x − b(x)||∞
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What is scalar field analysis?

Higher dimensions
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What is scalar field analysis?

Applicative setting

The ground truth:
I a sub-manifold M of Rd

I a c-Lipschitz function f : M 7→ R

What we really know:
I a set of points P ∈ Rd

I a function f̃ : P 7→ R

Approximate the persistence diagram D of f by a diagram D̂
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What is scalar field analysis?

Previous work
From Chazal, Guibas, Oudot and Skraba (DCG’11)
Under some conditions on ε and the geometry of M,

Theorem
If P is an ε Riemannian sample of M and ||f |P − f̃ ||∞ ≤ ξ, then:

dB(D, D̂) ≤ 4cε+ ξ

Theorem

If P is an ε Riemannian sample of M and the pairwise distances
between points of P are known with precision ν, then:

dB(D, D̂) ≤ (4ε+ 2ν)c

Mickaël Buchet - Scalar field analysis with aberrant noise December 16, 2013 - 7



What is scalar field analysis?

Previous work
From Chazal, Guibas, Oudot and Skraba (DCG’11)
Under some conditions on ε and the geometry of M,

Theorem
If P is an ε Riemannian sample of M and ||f |P − f̃ ||∞ ≤ ξ, then:

dB(D, D̂) ≤ 4cε+ ξ

Theorem

If P is an ε Riemannian sample of M and the pairwise distances
between points of P are known with precision ν, then:

dB(D, D̂) ≤ (4ε+ 2ν)c
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What is scalar field analysis?

A bad example
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Computing the persistence of a scalar field

Filtered simplicial complex

Classical algorithms to compute a persistence diagram work on a
filtered simplicial complex.

A simplicial complex is a set X of simplices such that for any
simplex σ ∈ X , all facets of σ are also in X .

We say that X is filtered when there exists a family of simplicial
complexes {Xα}α∈R such that for all α < β, Xα ⊂ Xβ ⊂ X .
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Computing the persistence of a scalar field

The Rips complex

Topologies of {f −1(]−∞, α)} and {f̃ −1(]−∞, α])} are
completely different:

Giving thickness by building a Rips complex:
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Computing the persistence of a scalar field

Nested Rips complexes

Sometimes, there is no parameter such that the Rips complex
capture the topology of M.

Solution: take two different parameters δ < δ′ and look at the
image of H∗(Rδ) by the morphism induced by the inclusion
Rδ ↪→ Rδ′ .

Effect of ”cleaning” the persistence diagram.
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Computing the persistence of a scalar field

Filtration by functional values

We study the scalar field f and not the manifold M.

We work for fixed parameters δ and δ′ and we use the values of f̃
to build the filtration:

Pα = f̃ −1(]−∞, α])

{Rδ(Pα) ↪→ Rδ′(Pα)}α∈R
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Computing the persistence of a scalar field

Theoretical guarantees
From Chazal, Guibas, Oudot and Skraba (DCG’11)
Let %(M) be the strong convexity radius of M.

Theorem
If P is an ε Riemannian sample of M, ||f |P − f̃ ||∞ ≤ ξ and ε < 1

4%(M):

∀δ ∈ [2ε, 1
2%(M)[, dB(Dgm(f ),Dgm(Rδ(Pα) ↪→ R2δ(Pα))) ≤ 2cδ + ξ

Theorem
If P is an ε Riemannian sample of M and the distance between points of
P are given by a function d̃ such that dM(x ,y)

λ ≤ d̃(x , y) ≤ ν + µ dM(x ,y)
λ ,

then:
∀δ ≥ ν + 2µ ε

λ
, δ′ ∈ [ν + 2µδ, 1

λ
%(M)[,

dB(Dgm(f ),Dgm(Rδ(Pα) ↪→ Rδ′(Pα)) ≤ cλδ′
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Functional denoising

Sources of noise

Mickaël Buchet - Scalar field analysis with aberrant noise December 16, 2013 - 14



Functional denoising

Sources of noise
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Functional denoising

Discrepancy

We compute new functionnal values for points :

For every point p in P:

1. Build the set NNk(p) of its k nearest neighbors.

2. Find the subset Y of k ′ values in f̃ (NNk(p)) with the smallest
variance.

3. Fix the new function value f̂ (p) as the barycenter of Y .
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Functional denoising

A variant using the median

We compute new functionnal values for points :

For every point p in P:

1. Build the set NNk(p) of its k nearest neighbors.

2. Fix the new function value f̂ (p) as the median of f̃ (NNk(p)).
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Functional denoising

Asymptotic behaviour

When k →∞ and k
n → 0.

Probability distribution around the correct value:
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Mickaël Buchet - Scalar field analysis with aberrant noise December 16, 2013 - 18



Functional denoising

Asymptotic behaviour

When k →∞ and k
n → 0.

Probability distribution around the correct value:
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Experimental illustration

Bone

Noisy input k-NN regression Discrepancy

Max 16.23 3.18 0.37
Mean 0.349 .204 .097
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Experimental illustration

Persistence of topographic map

Topographic map

Noisy topographic map Noisy persistence diagram

Original persistence diagram

k-NN persistence diagram Discrepancy persistence diagram
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Experimental illustration

Images

No noise

40% outliers

kNN Discrepancy Median
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Experimental illustration

Lena’s diagrams
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Experimental illustration

Lena’s diagrams
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Experimental illustration

Chessboard

No noise 30% outliers

kNN Discrepancy Median
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Geometric denoising

Building a complex with good properties

We need a complex that has the correct geometric structure to
analyze the scalar field.

I Use of the super-level sets of a density estimator

I Use of the sub-level sets of a distance-like function.
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Geometric denoising

Distance to measure in a nutshell

The distance to a measure is a distance-like function designed to
cope with outliers.

dµ,m(p) =

√√√√1
k

∑
x∈NNk(p)

||p − x ||2

I Easy to compute pointwise.
I Guarantees of geometric inference

[Chazal, Cohen-Steiner, Mérigot, 2011]
I Properties of a density estimator

[Biau, Chazal, Cohen-Steiner, Devroye, Rodrigues, 2011]
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Geometric denoising

A complete noise model

Three conditions:

1. Dense sampling:

∀x ∈ M, dµ,m(x) ≤ ε

2. No cluster of noise:

r = sup{l ∈ R|∀x , dµ,m(x) < l =⇒ d(x ,M) ≤ dµ,m(x) + ε}

3. For any point close to M, most of the neighboring values are
good:

∀p ∈ d−1
µ,m(]−∞, η]), |{q ∈ NNk(p)| |f̃ (q)−f (π(p))| ≤ s} ≥ k ′
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r = sup{l ∈ R|∀x , dµ,m(x) < l =⇒ d(x ,M) ≤ dµ,m(x) + ε}

3. For any point close to M, most of the neighboring values are
good:

∀p ∈ d−1
µ,m(]−∞, η]), |{q ∈ NNk(p)| |f̃ (q)−f (π(p))| ≤ s} ≥ k ′
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Geometric denoising

Theoretical results

Theorem
If P is a set verifying the previous conditions anf f is a c-Lipschitz
fucntion then:

∀δ ∈ [2η+6ε, %(M)

2 ], δ′ ∈ [2η+2ε+ 2RM
RM − (η + ε)

δ,
RM − (η + ε)

RM
%(M)],

dB(Dgm(f ), D̂) ≤
(

cRMδ
′

RM − (η + ε)
+ ξs

)
with ξ = 1 for the median and ξ = 1 + 2

√
k−k′

2k′−k for the
discrepancy.
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Take home

I A versatile and model free algorithm for functional denoising

I Scalar field analysis with noise in both the geometry and the
functional values

But...

I The algorithm needs some parameters.

I Heuristics exist but there is no general method to choose their
value.
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