

Scalar field analysis with aberrant noise

Mickaël Buchet

joint work with F. Chazal, T. Dey, F. Fan, S. Oudot and Y. Wang

Journées de Géométrie Algorithmique

How many peaks do you see?

Ínría

How many peaks do you see?

How many peaks do you see?

Persistence diagram

1.1

Persistence diagram

Lт

Persistence diagram

Гı

Persistence diagram

Persistence diagram

1

Comparison between persistence diagrams

Comparison between persistence diagrams

Comparison between persistence diagrams

Comparison between persistence diagrams

Bottleneck distance:

$$d_B(D, E) = \inf_{b \in \mathcal{B}} \max_{x \in D} ||x - b(x)||_{\infty}$$

Higher dimensions

Applicative setting

The ground truth:

- a sub-manifold M of \mathbb{R}^d
- a *c*-Lipschitz function $f : \mathsf{M} \mapsto \mathbb{R}$

Applicative setting

The ground truth:

- a sub-manifold M of \mathbb{R}^d
- a *c*-Lipschitz function $f : \mathsf{M} \mapsto \mathbb{R}$

What we really know:

- ▶ a set of points $P \in \mathbb{R}^d$
- a function $\tilde{f}: P \mapsto \mathbb{R}$

Applicative setting

The ground truth:

- a sub-manifold M of \mathbb{R}^d
- a *c*-Lipschitz function $f : \mathsf{M} \mapsto \mathbb{R}$

What we really know:

- ▶ a set of points $P \in \mathbb{R}^d$
- a function $\tilde{f}: P \mapsto \mathbb{R}$

Approximate the persistence diagram D of f by a diagram \hat{D}

Previous work

From Chazal, Guibas, Oudot and Skraba (DCG'11) Under some conditions on ϵ and the geometry of M,

Theorem

If P is an ϵ Riemannian sample of M and $||f|_P - \tilde{f}||_{\infty} \leq \xi$, then:

Previous work

From Chazal, Guibas, Oudot and Skraba (DCG'11) Under some conditions on ϵ and the geometry of M,

Theorem

If P is an ϵ Riemannian sample of M and $||f|_P - \tilde{f}||_{\infty} \leq \xi$, then:

 $d_B(D, \hat{D}) \leq 4c\epsilon + \xi$

Previous work

From Chazal, Guibas, Oudot and Skraba (DCG'11) Under some conditions on ϵ and the geometry of M,

Theorem

If P is an ϵ Riemannian sample of M and $||f|_P - \tilde{f}||_{\infty} \leq \xi$, then:

$$d_B(D, \hat{D}) \leq 4c\epsilon + \xi$$

Theorem

If P is an ϵ Riemannian sample of M and the pairwise distances between points of P are known with precision ν , then:

Previous work

From Chazal, Guibas, Oudot and Skraba (DCG'11) Under some conditions on ϵ and the geometry of M,

Theorem

If P is an ϵ Riemannian sample of M and $||f|_P - \tilde{f}||_{\infty} \leq \xi$, then:

$$d_B(D, \hat{D}) \leq 4c\epsilon + \xi$$

Theorem

If P is an ϵ Riemannian sample of M and the pairwise distances between points of P are known with precision ν , then:

$$d_B(D,\hat{D}) \leq (4\epsilon + 2\nu)c$$

A bad example

December 16, 2013 - 8

A bad example

December 16, 2013 - 8

A bad example

Filtered simplicial complex

Classical algorithms to compute a persistence diagram work on a filtered simplicial complex.

Filtered simplicial complex

Classical algorithms to compute a persistence diagram work on a filtered simplicial complex.

A simplicial complex is a set X of simplices such that for any simplex $\sigma \in X$, all facets of σ are also in X.

Filtered simplicial complex

Classical algorithms to compute a persistence diagram work on a filtered simplicial complex.

A simplicial complex is a set X of simplices such that for any simplex $\sigma \in X$, all facets of σ are also in X.

We say that X is filtered when there exists a family of simplicial complexes $\{X_{\alpha}\}_{\alpha \in \mathbb{R}}$ such that for all $\alpha < \beta$, $X_{\alpha} \subset X_{\beta} \subset X$.

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

Giving thickness by building a Rips complex:

Mickaël Buchet - Scalar field analysis with aberrant noise

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

Giving thickness by building a Rips complex:

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

Giving thickness by building a Rips complex:

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

Giving thickness by building a Rips complex:

The Rips complex

Topologies of $\{f^{-1}(] - \infty, \alpha)\}$ and $\{\tilde{f}^{-1}(] - \infty, \alpha]\}$ are completely different:

Giving thickness by building a Rips complex:

Mickaël Buchet - Scalar field analysis with aberrant noise

Nested Rips complexes

Sometimes, there is no parameter such that the Rips complex capture the topology of $\mathsf{M}.$

Nested Rips complexes

Sometimes, there is no parameter such that the Rips complex capture the topology of M.

Solution: take two different parameters $\delta < \delta'$ and look at the image of $H_*(R_{\delta})$ by the morphism induced by the inclusion $R_{\delta} \hookrightarrow R_{\delta'}$.

Nested Rips complexes

Sometimes, there is no parameter such that the Rips complex capture the topology of $\mathsf{M}.$

Solution: take two different parameters $\delta < \delta'$ and look at the image of $H_*(R_{\delta})$ by the morphism induced by the inclusion $R_{\delta} \hookrightarrow R_{\delta'}$.

Effect of "cleaning" the persistence diagram.

Filtration by functional values

We study the scalar field f and not the manifold M.

Innía

Filtration by functional values

We study the scalar field f and not the manifold M.

We work for fixed parameters δ and δ' and we use the values of \tilde{f} to build the filtration:

$$P_{\alpha} = \tilde{f}^{-1}(] - \infty, \alpha])$$

Filtration by functional values

We study the scalar field f and not the manifold M.

We work for fixed parameters δ and δ' and we use the values of \tilde{f} to build the filtration:

$$P_{\alpha} = \tilde{f}^{-1}(] - \infty, \alpha])$$

 $\{R_{\delta}(P_{\alpha}) \hookrightarrow R_{\delta'}(P_{\alpha})\}_{\alpha \in \mathbb{R}}$

Theoretical guarantees

From Chazal, Guibas, Oudot and Skraba (DCG'11) Let $\rho(M)$ be the strong convexity radius of M.

Theoretical guarantees

From Chazal, Guibas, Oudot and Skraba (DCG'11) Let $\rho(M)$ be the strong convexity radius of M.

Theorem

If P is an ϵ Riemannian sample of M, $||f|_P - \tilde{f}||_{\infty} \leq \xi$ and $\epsilon < \frac{1}{4}\varrho(M)$:

$$\forall \delta \in [2\epsilon, \frac{1}{2}\varrho(\mathsf{M})[, \textit{d}_{\mathcal{B}}(\mathrm{Dgm}(f), \mathrm{Dgm}(\textit{R}_{\delta}(\textit{P}_{\alpha}) \hookrightarrow \textit{R}_{2\delta}(\textit{P}_{\alpha}))) \leq 2c\delta + \xi$$

Theoretical guarantees

From Chazal, Guibas, Oudot and Skraba (DCG'11) Let $\rho(M)$ be the strong convexity radius of M.

Theorem

If P is an ϵ Riemannian sample of M, $||f|_P - \tilde{f}||_{\infty} \leq \xi$ and $\epsilon < \frac{1}{4}\varrho(M)$:

$$\forall \delta \in [2\epsilon, \frac{1}{2}\varrho(\mathsf{M})[, d_{\mathcal{B}}(\mathrm{Dgm}(f), \mathrm{Dgm}(\mathcal{R}_{\delta}(\mathcal{P}_{\alpha}) \hookrightarrow \mathcal{R}_{2\delta}(\mathcal{P}_{\alpha}))) \leq 2c\delta + \xi$$

Theorem

If P is an ϵ Riemannian sample of M and the distance between points of P are given by a function \tilde{d} such that $\frac{d_M(x,y)}{\lambda} \leq \tilde{d}(x,y) \leq \nu + \mu \frac{d_M(x,y)}{\lambda}$, then:

$$orall \delta \ge
u + 2\mu rac{\epsilon}{\lambda}, \ \delta' \in [
u + 2\mu\delta, rac{1}{\lambda}\varrho(\mathsf{M})[, \ d_{\mathsf{B}}(\mathrm{Dgm}(f), \mathrm{Dgm}(\mathsf{R}_{\delta}(\mathsf{P}_{lpha}) \hookrightarrow \mathsf{R}_{\delta'}(\mathsf{P}_{lpha})) \le c\lambda\delta'$$

Sources of noise

Inría

Mickaël Buchet - Scalar field analysis with aberrant noise

Sources of noise

Ínría

Sources of noise

Ínría

Mickaël Buchet - Scalar field analysis with aberrant noise

Sources of noise

Sources of noise

Mickaël Buchet - Scalar field analysis with aberrant noise

Discrepancy

We compute new functionnal values for points :

We compute new functionnal values for points :

We compute new functionnal values for points :

For every point p in P:

1. Build the set $NN_k(p)$ of its k nearest neighbors.

We compute new functionnal values for points :

- 1. Build the set $NN_k(p)$ of its k nearest neighbors.
- 2. Find the subset Y of k' values in $\tilde{f}(NN_k(p))$ with the smallest variance.

We compute new functionnal values for points :

- 1. Build the set $NN_k(p)$ of its k nearest neighbors.
- 2. Find the subset Y of k' values in $\tilde{f}(NN_k(p))$ with the smallest variance.
- 3. Fix the new function value $\hat{f}(p)$ as the barycenter of Y.

A variant using the median

We compute new functionnal values for points :

- 1. Build the set $NN_k(p)$ of its k nearest neighbors.
- 2. Fix the new function value $\hat{f}(p)$ as the median of $\tilde{f}(NN_k(p))$.

Asymptotic behaviour

When $k \to \infty$ and $\frac{k}{n} \to 0$.

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Probability distribution around the correct value:

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Probability distribution around the correct value:

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Probability distribution around the correct value:

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Probability distribution around the correct value:

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Probability distribution around the correct value:

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Asymptotic behaviour

When
$$k \to \infty$$
 and $\frac{k}{n} \to 0$.

Experimental illustration

Bone

	Noisy input	k-NN regression	Discrepancy
Max	16.23	3.18	0.37
Mean	0.349	.204	.097

Mickaël Buchet - Scalar field analysis with aberrant noise

Experimental illustration

Persistence of topographic map

Topographic map

Original persistence diagram

Persistence of topographic map

Original persistence diagram

Persistence of topographic map

Original persistence diagram

Persistence of topographic map

No noise

Mickaël Buchet - Scalar field analysis with aberrant noise

Images

No noise

40% outliers

Images

No noise

40% outliers

kNN

Images

No noise

40% outliers

kNN

Discrepancy

Median

Mickaël Buchet - Scalar field analysis with aberrant noise

Lena's diagrams

Mickaël Buchet - Scalar field analysis with aberrant noise

Lena's diagrams

Mickaël Buchet - Scalar field analysis with aberrant noise

Lena's diagrams

Mickaël Buchet - Scalar field analysis with aberrant noise

Lena's diagrams

Mickaël Buchet - Scalar field analysis with aberrant noise

Chessboard

No noise

30% outliers

Chessboard

No noise

30% outliers

kNN

Discrepancy

Median

/lickaël Buchet - Scalar field analysis with aberrant noise

Building a complex with good properties

We need a complex that has the correct geometric structure to analyze the scalar field.

Building a complex with good properties

We need a complex that has the correct geometric structure to analyze the scalar field.

- Use of the super-level sets of a density estimator
- Use of the sub-level sets of a distance-like function.

Distance to measure in a nutshell

The distance to a measure is a distance-like function designed to cope with outliers.

$$d_{\mu,m}(p) = \sqrt{rac{1}{k}\sum_{x\in \mathit{NN}_k(p)}||p-x||^2}$$

Distance to measure in a nutshell

The distance to a measure is a distance-like function designed to cope with outliers.

$$d_{\mu,m}(p) = \sqrt{rac{1}{k}\sum_{x\in \mathit{NN}_k(p)}||p-x||^2}$$

Easy to compute pointwise.

Distance to measure in a nutshell

The distance to a measure is a distance-like function designed to cope with outliers.

$$\mathcal{A}_{\mu,m}(p) = \sqrt{rac{1}{k}\sum_{x\in \mathit{NN}_k(p)}||p-x||^2}$$

- Easy to compute pointwise.
- Guarantees of geometric inference [Chazal, Cohen-Steiner, Mérigot, 2011]

Distance to measure in a nutshell

The distance to a measure is a distance-like function designed to cope with outliers.

$$d_{\mu,m}(p) = \sqrt{rac{1}{k}\sum_{x\in NN_k(p)}||p-x||^2}$$

- Easy to compute pointwise.
- Guarantees of geometric inference [Chazal, Cohen-Steiner, Mérigot, 2011]
- Properties of a density estimator
 [Biau, Chazal, Cohen-Steiner, Devroye, Rodrigues, 2011]

A complete noise model

Three conditions:

A complete noise model

Three conditions:

1. Dense sampling:

 $\forall x \in \mathsf{M}, \ d_{\mu,m}(x) \leq \epsilon$

A complete noise model

Three conditions:

1. Dense sampling:

$$\forall x \in \mathsf{M}, \ d_{\mu,m}(x) \leq \epsilon$$

2. No cluster of noise:

$$r = \sup\{l \in \mathbb{R} | \forall x, \ d_{\mu,m}(x) < l \implies d(x,\mathsf{M}) \le d_{\mu,m}(x) + \epsilon\}$$

A complete noise model

Three conditions:

1. Dense sampling:

$$\forall x \in \mathsf{M}, \ d_{\mu,m}(x) \leq \epsilon$$

2. No cluster of noise:

$$r = \sup\{l \in \mathbb{R} | \forall x, \ d_{\mu,m}(x) < l \implies d(x, \mathsf{M}) \le d_{\mu,m}(x) + \epsilon\}$$

3. For any point close to M, most of the neighboring values are good:

$$\forall p \in d_{\mu,m}^{-1}(]-\infty,\eta]), \ |\{q \in \mathsf{NN}_k(p)| \ |\tilde{f}(q)-f(\pi(p))| \leq s\} \geq k'$$

Theoretical results

Theorem

Innia

If P is a set verifying the previous conditions and f is a c-Lipschitz fucntion then:

$$\forall \delta \in [2\eta + 6\epsilon, \frac{\varrho(\mathsf{M})}{2}], \ \delta' \in [2\eta + 2\epsilon + \frac{2R_M}{R_M - (\eta + \epsilon)}\delta, \frac{R_M - (\eta + \epsilon)}{R_M}\varrho(\mathsf{M})], \\ d_B(\operatorname{Dgm}(f), \hat{D}) \leq \left(\frac{cR_M\delta'}{R_M - (\eta + \epsilon)} + \xi s\right) \\ \text{with } \xi = 1 \text{ for the median and } \xi = 1 + 2\sqrt{\frac{k - k'}{2k' - k}} \text{ for the discrepancy.}$$

Inría

A versatile and model free algorithm for functional denoising

- A versatile and model free algorithm for functional denoising
- Scalar field analysis with noise in both the geometry and the functional values

- A versatile and model free algorithm for functional denoising
- Scalar field analysis with noise in both the geometry and the functional values

But...

- A versatile and model free algorithm for functional denoising
- Scalar field analysis with noise in both the geometry and the functional values

But...

• The algorithm needs some parameters.

- A versatile and model free algorithm for functional denoising
- Scalar field analysis with noise in both the geometry and the functional values

But...

- The algorithm needs some parameters.
- Heuristics exist but there is no general method to choose their value.

